In order to estimate water supply potential, the effects of shortages on water users, and the uncertainty of local headspring conditions during the planning stage of reservoir construction, the Shortage Index (SI) is often employed. However, the criterion used in the SI is difficult to adjust to satisfy local conditions and objectives. The SI also employs an ambiguous definition of value. Thus, this study adopted a water supply reliability index (WSRI) as an alternative to the SI for providing the criterion for water resources project planning. The value of the WSRI is easily understood, because it is defined according to the real water supply situation and it has a strong linear relationship with values of SI. For any given water supply system, the estimated results derived from this study could serve as an additional remark on different SI values to explain the relevant water supply considerations. In addition, for a new planning site, the estimated results of this study could provide another way for engineers to evaluate the maximum water supply capability. Consequently, an interesting avenue of investigation in future research would be the incorporation of the WSRI with the risk of deficit frequency in establishing an efficient and transparent bottom-up approach for water resources management, involving all the relevant stakeholders.
Reservoirs are a crucial part of the human water supply system. The effectiveness and service life of a reservoir is decided mainly by its storage capacity, and as such, preventing reservoir capacity loss is of high interest worldwide. Due to climate change in recent years, precipitation types have changed, and heavy rainfall events have become more severe and frequent. Rainfall causes soil erosion in slope lands and transports large amounts of sediment downstream, forming deposition. This causes reservoir storage capacity to fall rapidly and decreases reservoir service life. The Sediment–Sluice Tunnel can reduce rapid deposition in reservoirs and is, thus, widely employed. By simulating sediment transportation in reservoirs, deposition reduction after building the Sediment–Sluice Tunnel can be evaluated. This study used the Physiographic Soil Erosion–Deposition (PSED) model to simulate the flow discharge and suspended sediment discharge flowing into the Zengwen reservoir then used the depth-averaged two-dimensional bed evolution model to simulate the sediment transportation and deposition in a hydrological process. Simulation results showed that the Sediment–Sluice Tunnel effectively reduced deposition and transported sediment closer to the spillway and Sediment–Sluice Tunnel gate. The deposition distribution with the Sediment–Sluice Tunnel built is more beneficial to the deployment of other dredging works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.