Rapid Prototyping (RP) has revolutionized the world of manufacturing. It has gained popularity among designers and artists, having developed from a visualization tool to a manufacturing tool for end-use products. Rapid-prototyped objects are being accessed by museums and the technology is being adopted for conservation applications. The review identifies the current most commonly used polymer based RP technologies and materials that are likely to enter museum collections, and formulates informed research topics related to their conservation. A knowledge exchange project was conducted with artists and designers using the technology via an online survey and interviews. The main technologies and materials used by artists and designers were identified and investigated including research that has been done into the stability of RP manufactured objects. Since these may be uniquely postprocessed by artists and designers, RP objects are often irreplaceable, i.e. cannot simply be reprinted. The evolution from rapid prototyping (RP) to additive manufacturing (AM) has resulted in extensive research into the mechanical properties and short-term stability of prototypes. However, very little research has been conducted into RP from the conservation perspective particularly long-term stability studies. Since RP technology is rapidly developing, it is crucial that conservators and scientists follow and inform these developments.
Several FTIR techniques are surface-sensitive. This sensitivity can be utilized to help with a wide range conservation issues. Examples from object degradation studies, conservation materials performance assessment and monitoring are presented. These are used to discuss the issues, advantages and information that can be drawn from studies. Glass degradation was quantified on the surfaces of cover glasses from important Nineteenth century daguerreotypes using Germanium attenuated total reflectance. The very limited information depth endowed by the high refractive index crystal gave good sensitivity when other techniques such as sectioning and scanning electron microscopy had failed to detect a gel layer present. The inner glass surface was always more deteriorated and the degree of deterioration inversely correlated with the distance between the inner glass surface and the daguerreotype or brass matt surface. Reflection-absorption FTIR microscopy has been combined with an excimer laser to determine the water content of a series of sections through the depth of a wax. A common wax used to protect metals has been found to take up liquid water in humid environments and hold that water close to or at the metal surface. An adjustable height gold mirror was used to bounce the IR beam many times across a surface, which can give extreme sensitivity. Haze and smoke generators are increasingly being introduced into displays or for special events or filming. Very low detection limits (1 ng) were found using gold coated glass slides to detect haze deposits.
Concerns about the stability of plastic artefacts are commonly expressed when discussing the conservation of modern materials. One of the factors affecting the degradation of plastics is the presence of soil, degradation products and other contaminants on the surface. Cleaning treatments for plastic artefacts may therefore increase their stability as well as improving their visual appearance. While past studies have shown that dry, aqueous and solvent cleaning can visibly damage a plastic surface, the chemical and physical changes occurring to the surface at the micro-scale have been largely unexplored. In this work time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used in conjunction with atomic force microscopy (AFM) and scanning electron microscopy (SEM) to examine the effect of cleaning treatments on the surface of sheet polystyrene. Chemometric analysis of the ToF-SIMS data reveals the presence of surfactant residues and contamination from cleaning agents while physical damage in the form of scratching has been characterised using AFM and SEM. It is anticipated such work will assist in informing future conservation treatments for plastics.
Mechanical and chemical properties of adhesives films commonly used in textile conservation are examined. The measurements undertaken are based on standard tests, adapted to reflect the properties of the adhesives as used. The tests are performed on samples modelling real objects, consisting of a sandwich of support, adhesive film and (where appropriate) a mock artefact. All samples were prepared by practised textile conservators. The working properties of the adhesives, evaluated subjectively during the sample preparations, are combined with data from the mechanical and chemical tests. The results are presented in an easily tuned evaluation matrix which ranks the adhesives in order of suitability for the requirements of a particular treatment and/or preferences of a given conservator. The first part of this project to evaluate adhesives describes surveys of current use and is reported in the accompanying paper by Hillyer et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.