Recovery of hand function following lesions in the primary motor cortex (M1) is associated with a reorganization of premotor areas in the ipsilesional hemisphere, and this reorganization depends on the size of the lesion. It is not clear how lesion size affects motor representations in the contralesional hemisphere and how the effects in the 2 hemispheres compare. Our goal was to study how lesion size affects motor representations in the ipsilesional and contralesional hemispheres. In rats, we induced lesions of different sizes in the caudal forelimb area (CFA), the equivalent of M1. The effective lesion volume in each animal was quantified histologically. Behavioral recovery was evaluated with the Montoya Staircase task for 28 days after the lesion. Then, the organization of the CFA and the rostral forelimb area (RFA)—the putative premotor area in rats—in the 2 cerebral hemispheres was studied with intracortical microstimulation mapping techniques. The distal forelimb representation in the RFA of both the ipsilesional and contralesional hemispheres was positively correlated with the size of the lesion. In contrast, lesion size had no effect on the contralesional CFA, and there was no relationship between movement representations in the 2 hemispheres. Finally, only the contralesional RFA was negatively correlated with chronic motor deficits of the paretic forelimb. Our data show that lesion size has comparable effects on motor representations in premotor areas of both hemispheres and suggest that the contralesional premotor cortex may play a greater role in the recovery of the paretic forelimb following large lesions.
In rats, forelimb movements can be evoked from two distinct cortical regions, the rostral (RFA) and the caudal (CFA) forelimb areas. RFA and CFA have numerous reciprocal connections, and their projections reach several common targets, which allows them to interact at multiple levels of the motor axis. Lesions affecting these areas result in profound and persistent deficits, supporting their essential role for the production of arm and hand movements. Whereas rats are widely used to study motor control and recovery following lesions, little is known as to how cortical motor areas in this model interact to generate movements. To study interactions between RFA and CFA, we used paired-pulse protocols with intracortical microstimulation techniques (ICMS). A conditioning stimulus (C) in RFA was applied simultaneously, or before a test stimulus (T) in CFA. The impact of RFA conditioning on CFA outputs was quantified by recording electromyographic signals (EMG) signals from the contralateral arm muscles. We found that stimulation of RFA substantially modulates the intensity of CFA outputs while only mildly affecting the latency. In general, the effect of RFA conditioning changed from predominantly facilitatory to inhibitory with increasing delays between the C and the T stimulus. However, inspection of individual cortical sites revealed that RFA has a wide range of influence on CFA outputs with each interstimulation delay we used. Our results show that RFA has powerful and complex modulatory effects on CFA outputs that can allow it to play a major role in the cortical control of forelimb movements.
A rapidly growing number of studies using inhibition of the contralesional hemisphere after stroke are reporting improvement in motor performance of the paretic hand. These studies have used different treatment onset time, duration and non-invasive methods of inhibition. Whereas these results are encouraging, several questions regarding the mechanisms of inhibition and the most effective treatment parameters are currently unanswered. In the present study, we used a rat model of cortical lesion to study the effects of GABA-mediated inactivation on motor recovery. In particular, we were interested in understanding better the effect of inactivation duration when it is initiated within hours following a cortical lesion. Cortical lesions were induced with endothelin-1 microinjections. The contralesional hemisphere was inactivated with continuous infusion of the GABA-A agonist Muscimol for 3, 7 or 14days in three different groups of animals. In a fourth group, Muscimol was infused at slower rate for 14days to provide additional insights on the relation between the effects of inactivation on the non-paretic forelimb behavior and the recovery of the paretic forelimb. In spontaneously recovered animals, the lesion caused a sustained bias to use the non-paretic forelimb and long-lasting grasping deficits with the paretic forelimb. Contralesional inactivation produced a general decrease of behavioral activity, affected the spontaneous use of the forelimbs and caused a specific reduction of the non-paretic forelimb function. The intensity and the duration of these behavioral effects varied in the different experimental groups. For the paretic forelimb, increasing inactivation duration accelerated the recovery of grasping function. Both groups with 14days of inactivation had similar recovery profiles and performed better than animals that spontaneously recovered. Whereas the plateau performance of the paretic forelimb correlated with the duration of contralesional inactivation, it was not correlated with the spontaneous use of the forelimbs or with grasping performance of the non-paretic hand. Our results support that contralesional inactivation initiated within hours after a cortical lesion can improve recovery of the paretic forelimb. In our model, increasing the duration of the inactivation improved motor outcomes but the spontaneous use and motor performance of the non-paretic forelimb had no impact on recovery of the paretic forelimb.
Lesion size and location affect the magnitude of impairment and recovery following stroke, but the precise relationship between these variables and functional outcome is unknown. Herein, we systematically varied the size of strokes in motor cortex and surrounding regions to assess effects on impairment and recovery of function. Female Sprague Dawley rats (N = 64) were evaluated for skilled reaching, spontaneous limb use, and limb placement over a 7 week period after stroke. Exploration and reaching were also tested in a free ranging, more naturalistic, environment. MRI voxel-based analysis of injury volume and its likelihood of including the caudal forelimb area (CFA), rostral forelimb area (RFA), hindlimb (HL) cortex (based on intracranial microstimulation), or their bordering regions were related to both impairment and recovery. Severity of impairment on each task was best predicted by injury in unique regions: impaired reaching, by damage in voxels encompassing CFA/RFA; hindlimb placement, by damage in HL; and spontaneous forelimb use, by damage in CFA. An entirely different set of voxels predicted recovery of function: damage lateral to RFA reduced recovery of reaching, damage medial to HL reduced recovery of hindlimb placing, and damage lateral to CFA reduced recovery of spontaneous limb use. Precise lesion location is an important, but heretofore relatively neglected, prognostic factor in both preclinical and clinical stroke studies, especially those using region-specific therapies, such as transcranial magnetic stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.