Although both groups made progress on the GMFM, the COP measures indicated an advantage for the group with perceptual-motor intervention. The COP measures appear sensitive for assessment of infant posture control and quantifying intervention response.
Recovery of hand function following lesions in the primary motor cortex (M1) is associated with a reorganization of premotor areas in the ipsilesional hemisphere, and this reorganization depends on the size of the lesion. It is not clear how lesion size affects motor representations in the contralesional hemisphere and how the effects in the 2 hemispheres compare. Our goal was to study how lesion size affects motor representations in the ipsilesional and contralesional hemispheres. In rats, we induced lesions of different sizes in the caudal forelimb area (CFA), the equivalent of M1. The effective lesion volume in each animal was quantified histologically. Behavioral recovery was evaluated with the Montoya Staircase task for 28 days after the lesion. Then, the organization of the CFA and the rostral forelimb area (RFA)—the putative premotor area in rats—in the 2 cerebral hemispheres was studied with intracortical microstimulation mapping techniques. The distal forelimb representation in the RFA of both the ipsilesional and contralesional hemispheres was positively correlated with the size of the lesion. In contrast, lesion size had no effect on the contralesional CFA, and there was no relationship between movement representations in the 2 hemispheres. Finally, only the contralesional RFA was negatively correlated with chronic motor deficits of the paretic forelimb. Our data show that lesion size has comparable effects on motor representations in premotor areas of both hemispheres and suggest that the contralesional premotor cortex may play a greater role in the recovery of the paretic forelimb following large lesions.
In rats, forelimb movements can be evoked from two distinct cortical regions, the rostral (RFA) and the caudal (CFA) forelimb areas. RFA and CFA have numerous reciprocal connections, and their projections reach several common targets, which allows them to interact at multiple levels of the motor axis. Lesions affecting these areas result in profound and persistent deficits, supporting their essential role for the production of arm and hand movements. Whereas rats are widely used to study motor control and recovery following lesions, little is known as to how cortical motor areas in this model interact to generate movements. To study interactions between RFA and CFA, we used paired-pulse protocols with intracortical microstimulation techniques (ICMS). A conditioning stimulus (C) in RFA was applied simultaneously, or before a test stimulus (T) in CFA. The impact of RFA conditioning on CFA outputs was quantified by recording electromyographic signals (EMG) signals from the contralateral arm muscles. We found that stimulation of RFA substantially modulates the intensity of CFA outputs while only mildly affecting the latency. In general, the effect of RFA conditioning changed from predominantly facilitatory to inhibitory with increasing delays between the C and the T stimulus. However, inspection of individual cortical sites revealed that RFA has a wide range of influence on CFA outputs with each interstimulation delay we used. Our results show that RFA has powerful and complex modulatory effects on CFA outputs that can allow it to play a major role in the cortical control of forelimb movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.