Test data on several small turbochargers with different levels of heat transfer from the turbine to the compressor have been obtained through cooling of the turbocharger center housing and by testing in hot and cold test stands. This data identifies the strong effect of the heat transfer on the apparent efficiency of the compressor and turbine, particularly at low speeds and low mass flows. A simplified theory is used to explain the apparent effect of the heat transfer on the work input and efficiency. The results confirm that conventional performance maps underestimate the efficiency of the compressor stage and overestimate the efficiency of the turbine by as much as 20% points at low speeds. A correction procedure for this effect is defined which converts performance maps obtained with heat transfer to performance maps for adiabatic conditions (for both compressor and turbine) without any prior knowledge or measurement of the heat transfer. The practical significance of the results with regard to turbocharger performance and the relevance to a broader class of turbomachines is discussed.
Test data on several small turbochargers with different levels of heat transfer from the turbine to the compressor have been obtained through cooling of the turbocharger center housing and by testing in hot and cold test stands. This data identifies the strong effect of the heat transfer on the apparent efficiency of the compressor and turbine, particularly at low speeds and low mass flows. A simplified theory is used to explain the apparent effect of the heat transfer on the work input and efficiency. The results confirm that conventional performance maps underestimate the efficiency of the compressor stage and overestimate the efficiency of the turbine by as much as 20% points at low speeds. A correction procedure for this effect is defined which converts performance maps obtained with heat transfer to performance maps for adiabatic conditions (for both compressor and turbine) without any prior knowledge or measurement of the heat transfer. The practical significance of the results with regard to turbocharger performance and the relevance to a broader class of turbomachines is discussed.
Engineering foundation for micro-turbomachinery aerothermal design, as an enabling element of the MIT micro-gas turbine technology, is developed. Fundamental differences between conventional, large scale and micro turbomachinery operation are delineated and the implications on design are discussed. These differences are largely a consequence of low operating Reynolds number, hence a relatively higher skin friction and heat transfer rate. While the size of the micro-gas turbine engine is ∼ a few mm, several order of magnitude smaller than conventional gas turbine, the required compressor stage pressure ratio (∼3–4) and impeller tip Mach number (∼1 and greater) are comparable; however, the disparity in the size implies that the operating Reynolds number of the micro-turbomachiery components is correspondingly several order of magnitudes smaller. Thus the design and operating requirements for micro-turbomachinery are distinctly different from those of conventional turbomachinery used for propulsion and power generation. Important distinctions are summarized in the following. 1. The high surface-to-flow rate ratio has the consequence that the flow in micro-compressor flow path can no longer be taken as adiabatic; the performance penalty associated with heat addition to compressor flow path from turbine is a primary performance limiting factor. 2. Endwall torque on the flow can be significant compared to that from the impeller blade surfaces so that direct use of Euler Turbine Equation is no longer appropriate. 3. Losses in turbine nozzle guide vanes (NGVs) can be one order of magnitude higher than those in conventional sized nozzle guide vanes. 4. The high level of kinetic energy in the flow exiting the turbine rotor is a source of performance penalty, largely a consequence of geometrical constraints. It can be inferred from these distinctions that standard preliminary design procedures based on the Euler equation, the adiabatic assumption, the loss correlations for large Reynolds numbers, and the three-dimensional geometry, are inapplicable to micro-turbomachinery. The preliminary design procedure, therefore, must account for these important differences. Characterization of the effects of heat addition on compressor performance, modification of Euler turbine equation for casing torque, characterization of turbine NGV performance and turbine exhaust effects are presented.
A study has been conducted, using unsteady three-dimensional Reynolds-averaged Navier-Stokes simulations to determine the impact on rotor performance of the interaction between upstream (steady defect and time-varying defect) stator wakes and rotor tip clearance flow. The key effects of the interaction between steady stator wakes and rotor tip clearance flow are: 1) a decrease in loss and blockage associated with tip clearance flow; 2) an increase in passage static pressure rise. Performance benefit is seen in the operability range from near design to high loading. The benefit is modest near design and increases with loading. Significant beneficial changes due to the stator-rotor interaction occur when the phenomenon of tip clearance flow double-leakage is present. Double-leakage occurs when the tip clearance flow passes through the tip gap of the adjacent blade. It is detrimental for compressor performance. The effect of strong stator-rotor interaction is to suppress double-leakage on a time-average basis. Double-leakage typically takes place at high loading but can be present at design condition as well, for modern highly loaded compressor. A benefit due to unsteady interaction is also observed in the operability range of the rotor. A new generic causal mechanism is proposed to explain the observed changes in performance. It identifies the interaction between the tip clearance flow and the pressure pulses, induced on the rotor blade pressure surface by the upstream wakes, as the cause for the observed effects. The direct effect of the interaction is a decrease in the time-average double-leakage flow through the tip clearance gap so that the stream-wise defect of the exiting tip flow is lower with respect to the main flow. A lower defect leads to a decrease in loss and blockage generation and hence an enhanced performance compared to that in the steady situation. The performance benefits increase monotonically with loading and scale linearly with upstream wake velocity defect. With oscillating defect stator wakes, rotor performance shows dependence on oscillation frequency. Changes in the tip region occur at a particular reduced frequency leading to (1) decrease in blockage, and (2) increase in passage loss. The changes in rotor performance at a particular reduced frequency are hypothesized to be associated with the inherent unsteadiness of the tip clearance vortex and its resonance behavior excited by the oscillating wakes.
A study has been conducted, using steady three-dimensional Reynolds-averaged Navier-Stokes simulations (FLUENT) to investigate dominant performance limiting mechanisms for micro-scale, high-speed compressor impellers with diameter in the range of 5mm to 10mm and peripheral speed ∼ 500 ms−1. Heat transfer to impeller flow (hence non-adiabatic in contrast to nearly adiabatic macro-scale centrifugal compressors for aircraft engine application), casing drag, and impeller passage boundary layer loss are identified as micro-scale impeller performance limiting mechanisms. Heat transfer could lead to up to 25 efficiency points penalty, casing drag to about 10–15 points, and passage boundary layer loss to another 10 points for the investigated micro-impellers. Micro-impeller efficiency of up to 90% is achievable if design is directed at mitigating these performance limiting mechanisms. The effect of heat addition on impeller performance is detrimental and depends on a single non-dimensional parameter (ratio of added heat to inlet stagnation enthalpy). The performance penalty is associated with the physical fact that compression at high temperatures requires more work. Casing drag associated with impeller rotating relative to stationary casing results in a torque on the flow near the casing and impeller blade tip that can be characterized in terms of rotational Reynolds number and ratio of tip clearance to impeller radius. Channel boundary layer loss can be characterized in terms of Reynolds number, geometry (impeller exit-to-inlet diameter ratio, blade angles, chord-to-inlet diameter ratio, average-to inlet span ratio, inlet diameter-to-inlet span ratio), and exit-to-inlet temperature ratio related to work input (rotor geometry and speed). A physics-based model is developed for quantifying each of these performance-limiting processes, given the key design parameters. The results from the models are in accord with CFD (FLUENT) data. Implications on impeller design are discussed and design guidelines are formulated. The paper reports a quantitative investigation of micro-turbomachinery performance limiting mechanisms and offers design guidelines based on physical understanding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.