Backward-facing step (BFS) flow is a benchmark case study in fluid mechanics. Its control by means of electromagnetic actuation has attracted great interest in recent years. This paper focuses on the effects of a uniform stationary magnetic field on the laminar ferrofluid BFS flows for the Reynolds number range 0.1=Re=400 and different expansion ratios. The coupled ferrohydrodynamic equations, including the microscopically derived magnetization equation, for a two-dimensional domain are solved numerically by an Open FOAM solver after validation and a test of accuracy. The application of a magnetic field causes the corner vortices in the concave corner behind the step to be retracted compared with their positions in the absence of a magnetic field. The maximum percentage of the normalized decrease in length of these eddies reaches 41.23% in our simulations. For small Reynolds numbers (<10), the flow separation points on the convex corner are lowered in the presence of a magnetic field. Furthermore, the dimensionless total pressure drop between the channel inlet and outlet decreases almost linearly with Reynolds number Re, but the drop is greater when a magnetic field is applied. On the whole, the normalized recirculation length of the corner vortex increases nonlinearly with increasing magnetic Reynolds number Rem and Brownian Péclet number Pe, but it tends to constant values in the limits Re ≪ 1 and Re ≫ 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.