In recent years, the reconstruction of individual life history by the multi-isotope analysis of different skeletal elements has become an active topic in bioarchaeological field. However, most studies focus on the persons with high social status and none cares for craftsmen with low social status. In this study, we undertook a comprehensive analysis on a human skeleton buried in the Oupan kiln, Anhui, China to recover his osteobiography. The archaeological context and dating result (534–644 cal. AD) indicate that he might be a potter at the kiln during the Sui and early Tang Dynasty, characteristic of low social hierarchy. The osteological investigation suggests that he had abnormal vertebrae related to long-term physical labor. In general, the isotopic data demonstrate that he mainly consumed C
3
(wheat, beans)/C
4
(millets)-based terrestrial foods. The isotopic (C, N) profiles of dentin sections and isotopic data (C, O) of bone apatite and teeth enamel indicate that he had experienced dramatic dietary changes and/or several migrations throughout the childhood and adulthood. His turbulent life trajectory was highly relevant to his identity and low social status. Our study provides a pilot insight into the life history of craftsmen who was generally overlooked in archaeological, historic and anthropological research.
Histone deacetylase (HDAC) inhibitors (HDACis) have been widely used in plants to investigate the role of histone acetylation, particularly the function of HDACs, in the regulation of development and stress response. However, how histone acetylation is involved in rice (Oryza sativa L.) disease resistance has hardly been studied. In this paper, four HDACis including Sodium butyrate (NaBT), Suberoylanilide Hydroxamic Acid (SAHA), LBH-589 and Trichostatin A (TSA) were used to treat rice seedlings at different concentrations before inoculation of Magnaporthe oryzae. We found that only 10mM NaBT treatment can significantly enhanced rice blast resistance. However, treatment of the four HDACis all increased global histone acetylation but at different sites, suggesting that the inhibition selectivity of these HDACis is different. Notably, the global H3K9ac level was dramatically elevated after both NaBT and LBH589 treatment although LBH589 could not enhance rice blast resistance. This indicates that the HDACs they inhibit target different genes. In accordance with the phenotype, transcriptomic analysis showed that many defense-related genes were up-regulated by NaBT treatment. Up-regulation of the four genes bsr-d1, PR10B, OsNAC4, OsKS4 were confirmed by RT-qPCR. ChIP-qPCR results revealed that H3K9ac level on these genes was increased after NaBT treatment, suggesting that these defense-related genes were repressed by HDACs. In addition, by promoter motif analysis of the genes that induced by both NaBT treatment and rice blast infection, we found that the motifs bound by ERF and AHL transcription factors (TFs) were the most abundant, which demonstrates that ERF and AHL proteins may act as the candidate TFs that recruit HDACs to defense-related genes to repress their expression when plants are not infected by rice blast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.