Cloth dynamics and collision handling are the two most challenging topics in cloth simulation. While researchers have substantially improved the performances of cloth dynamics solvers recently, their success in fast collision detection and handling is rather limited. In this article, we focus our research on the safety, efficiency, and realism of the repulsion-based collision handling approach, which has demonstrated its potential in existing GPU-based simulators. Our first discovery is the necessary vertex distance conditions for cloth to enter self intersections, the negations of which can be viewed as vertex distance constraints continuous in time for sufficiently avoiding self collisions. Continuous constraints, however, cannot be enforced with ease. Our solution is to convert continuous constraints into three types of constraints: discrete edge length constraints, discrete vertex distance constraints, and vertex displacement constraints. Based on this solution, we develop a fast and safe collision handling process for enforcing constraints, a novel splitting method for integrating collision handling with dynamics solvers, and static and adaptive remeshing schemes to further improve the runtime performance. In summary, our cloth simulator is efficient, safe, robust, and parallelizable on a GPU. The experiment shows that it runs at least one order of magnitude faster than existing simulators.
In order to achieve more efficient energy consumption, it is crucial that accurate detailed information is given on how power is consumed. Electricity details benefit both market utilities and also power consumers. Non-intrusive load monitoring (NILM), a novel and economic technology, obtains single-appliance power consumption through a single total power meter. This paper, focusing on load disaggregation with low hardware costs, proposed a load disaggregation method for low sampling data from smart meters based on a clustering algorithm and support vector regression optimization. This approach combines the k-median algorithm and dynamic time warping to identify the operating appliance and retrieves single energy consumption from an aggregate smart meter signal via optimized support vector regression (OSVR). Experiments showed that the technique can recognize multiple devices switching on at the same time using low-frequency data and achieve a high load disaggregation performance. The proposed method employs low sampling data acquired by smart meters without installing extra measurement equipment, which lowers hardware cost and is suitable for applications in smart grid environments.
In this paper, we wish to push the limit of real-time cloth and deformable body simulation to a higher level with 50K to 500K vertices, based on the development of a novel GPU-based multilevel additive Schwarz (MAS) pre-conditioner. Similar to other preconditioners under the MAS framework, our preconditioner naturally adopts multilevel and domain decomposition concepts. But contrary to previous works, we advocate the use of small, non-overlapping domains that can well explore the parallel computing power on a GPU. Based on this idea, we investigate and invent a series of algorithms for our preconditioner, including multilevel domain construction using Morton codes, low-cost matrix precomputation by one-way Gauss-Jordan elimination, and conflict-free symmetric-matrix-vector multiplication in runtime preconditioning. The experiment shows that our preconditioner is effective, fast, cheap to precompute and scalable with respect to stiffness and problem size. It is compatible with many linear and nonlinear solvers used in cloth and deformable body simulation with dynamic contacts, such as PCG, accelerated gradient descent and L-BFGS. On a GPU, our preconditioner speeds up a PCG solver by approximately a factor of four, and its CPU version outperforms a number of competitors, including ILU0 and ILUT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.