We have characterized the general properties of the heat shock response of the Gram-positive hardy bacterium Enterococcus faecalis. The heat resistance (60 degrees C or 62.5 degrees C, 30 min) of log phase cells of E. faecalis grown at 37 degrees C was enhanced by exposing cells to a prior heat shock at 45 degrees C or 50 degrees C for 30 min. These conditioning temperatures also induced ethanol (22%, v/v) tolerance. The onset of thermotolerance was accompanied by the synthesis of a number of heat shock proteins. The most prominent bands had molecular weights in the range of 48 to 94kDa. By Western blot analysis two of them were found to be immunologically related to the well known DnaK (72kDa) and GroEL (63kDa) heat shock proteins of Escherichia coli. Four other proteins showing little or no variations after exposure to heat are related to DnaJ, GrpE and Lon (La) E. coli proteins and to the Bacillus subtilis sigma 43 factor. Ethanol (2% or 4%, v/v) treatments elicited a similar response although there was a weaker induction of heat shock proteins than with heat shock.
Transfer of Enterococcus faecalis to a cold temperature (8 degrees C for 4 to 30 h) led to increased expression of 11 cold shock proteins (CSPs). Furthermore, this mesophilic prokaryote synthesized 10 cold acclimation proteins, five of them distinct from CSPs, during continuous growth (4 days) at the same temperature (8 degrees C).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.