RESUMENous avons realise une serie d'experiences numeriques dans le but d'etudier l'effet de la discretisation de la loi de probabilite des apports naturels, sur l'exactitude de la solution optimale d'un modele de programmation dynamique stochastique, pour la gestion d'un reservoir hydroelectrique avec fonction de revenu lineaire pax morceau. Nous avons evalue l'erreur obtenue en fonction de la finesse de discretisation sur une grille reguliere, et nous l'avons comparee avec l'erreur d'une methode basee sur la quadrature gaussienne. Nous trouvons que l'erreur relative de la quadrature gaussienne a trois noeuds est presqu'aussi grande qu'avec la solution deterministe.
ABSTRACTWe performed a series of numerical experiments in order to study the effect of discretizing the probability distribution of the natural inflows, on the accuracy of the optimal solution of a stochastic dynamic programming model, for the managament of a hydroelectric reservoir with a piecewise linear revenue function. We evaluated the error obtained as a function of the coarseness of the discretization on a regular grid, and we compared it with the error of a method based on Gaussian quadrature. We find that the relative error of the Gaussian quadrature method is almost as large as with the deterministic solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.