The use of Unmanned Aerial Vehicles (UAVs) for wireless networks is rapidly growing as key enablers of new applications, including: surveillance and monitoring, military, delivery of medical supplies, telecommunications, etc. In particular, due to their unique proprieties such as flexibility, mobility, and adaptive altitude, UAVs can act as mobile base stations to improve capacity, coverage, and energy efficiency of wireless networks. On the other hand, UAVs can operate as mobile terminals to enable many applications such as item delivery and real-time video streaming. In such context, data-driven Deep Learning-assisted (DL) approaches are gaining a growing interest to not only exploit the huge amount of generated data, but also to optimize the network operations, and hence ensure the QoS requirements of these emerging wireless networks. However, UAVs are resource-constrained devices especially in terms of computing and power resources, and traditional DL-assisted schemes are cloud-centric, which require UAVs' data to be sent and stored in a centralized server. This represents a critical issue since it generates a huge network communication overhead to send raw data towards the centralized entity, and hence may lead to network bandwidth and energy inefficiency of UAV devices. In addition, the transferred data may contain personnel data such as UAVs' localization and identity, which can directly affect UAVs' privacy concerns. As a solution, Federated Deep Learning (FDL), or distributed DL, was introduced, where the basic idea is to keep raw data where it is generated, while sending only users' local trained DL models to the centralized entity for aggregation. Due to its privacy-preserving and low communication overhead and latency, FDL is much more adequate for many UAVs-enabled wireless applications. In this work, we provide a general introduction of FDL application for UAV-enabled wireless networks. We first introduce the FDL concept and its fundamentals. Then, we highlight the possible applications of FDL in UAVs-enabled wireless networks by addressing the suitability and how to use FDL to deal with target challenges. Finally, we discuss about key technical challenges, open issues, and future research directions on FDL-based approaches in such context. INDEX TERMS Deep learning, federated deep learning, UAVs-based wireless networks, wireless communications.
Open Radio Access Network (O-RAN) alliance was recently launched to devise a new RAN architecture featuring open, softwaredriven, virtual, and intelligent radio access architecture. O-RAN architecture is based on (1) disaggregated RAN functions that run as Virtual Network Function (VNF) and Physical Network Function (PNF); (2) the notion of RAN controller that runs centrally RAN applications such as mobility management, users' scheduling, radio resources allocation, etc. The RAN controller is in charge of enforcing the application decisions by using open interfaces with the RAN functions. One important feature introduced by O-RAN is the heavy usage of Machine Learning (ML) techniques, particularly Deep Learning (DL), to foster innovation and ease the deployment of intelligent RAN applications that are able to fulfill the Quality of Service (QoS) requirements of the envisioned 5G and beyond network services. In this work, we first give an overview of the evolution of RAN architectures toward 5G and beyond, namely C-RAN, vRAN, and O-RAN. We also compare them based on various perspectives, such as edge support, virtualization, control and management, energy consumption, and AI support. Then, we review existing DL-based solutions addressing the RAN part. We also show how they can be integrated/mapped to the O-RAN architecture since these works were not initially adapted to the O-RAN architecture. In addition, we present two case studies for DL techniques deployment in O-RAN. Furthermore, we describe how the main steps of deployed DL models in O-RAN can be automated, to ensure stable performance of these models, introducing ML system operations (MLOps) concept in O-RAN. Finally, we identify key technical challenges, open issues, and future research directions related to the Artificial Intelligence (AI)-enabled O-RAN architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.