Salt stress impedes plant growth and development, and leads to yield loss. Recently, a halophyte species Mesembryanthemum crystallinum has become a model to study plant photosynthetic responses to salt stress. It has an adaptive mechanism of shifting from C 3 photosynthesis to crassulacean acid metabolism (CAM) photosynthesis under stresses, which greatly enhances water usage efficiency and stress tolerance. In this study, we focused on investigating the morphological and physiological changes [e.g., leaf area, stomatal movement behavior, gas exchange, leaf succulence, and relative water content (RWC)] of M. crystallinum during the C 3 to CAM photosynthetic transition under salt stress. Our results showed that in M. crystallinum seedlings, CAM photosynthesis was initiated after 6 days of salt treatment, the transition takes place within a 3-day period, and plants became mostly CAM in 2 weeks. This result defined the transition period of a facultative CAM plant, laid a foundation for future studies on identifying the molecular switches responsible for the transition from C 3 to CAM, and contributed to the ultimate goal of engineering CAM characteristics into C 3 crops.
Plants have evolved a two-layered immune system consisting of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). PTI and ETI are functionally linked, but also have distinct characteristics. Unraveling how these immune systems coordinate plant responses against pathogens is crucial for understanding the regulatory mechanisms underlying plant defense. Here we report integrative proteomic and phosphoproteomic analyses of the tomato-Pseudomonas syringae (Pst) pathosystem with different Pst mutants that allow the dissection of PTI and ETI. A total of 225 proteins and 79 phosphopeptides differentially accumulated in tomato leaves during Pst infection. The abundances of many proteins and phosphoproteins changed during PTI or ETI, and some responses were triggered by both PTI and ETI. For most proteins, the ETI response was more robust than the PTI response. The patterns of protein abundance and phosphorylation changes revealed key regulators involved in Ca2+ signaling, mitogen-activated protein kinase cascades, reversible protein phosphorylation, reactive oxygen species (ROS) and redox homeostasis, transcription and protein turnover, transport and trafficking, cell wall remodeling, hormone biosynthesis and signaling, suggesting their common or specific roles in PTI and/or ETI. A NAC (NAM, ATAF, and CUC family) domain protein and lipid particle serine esterase, two PTI-specific genes identified from previous transcriptomic work, were not detected as differentially regulated at the protein level and were not induced by PTI. Based on integrative transcriptomics and proteomics data, as well as qRT-PCR analysis, several potential PTI and ETI-specific markers are proposed. These results provide insights into the regulatory mechanisms underlying PTI and ETI in the tomato-Pst pathosystem, and will promote future validation and application of the disease biomarkers in plant defense.
Mesembryanthemum crystallinum (common ice plant) is a halophyte species that has adapted to extreme conditions. In this study, we cloned a McHB7 transcription factor gene from the ice plant. The expression of McHB7 was significantly induced by 500 mM NaCl and it reached the peak under salt treatment for 7 days. The McHB7 protein was targeted to the nucleus. McHB7-overexpressing in ice plant leaves through Agrobacterium-mediated transformation led to 25 times more McHB7 transcripts than the non-transformed wild type (WT). After 500 mM NaCl treatment for 7 days, the activities of superoxide dismutase (SOD) and peroxidase (POD) and water content of the transgenic plants were higher than the WT, while malondialdehyde (MDA) was decreased in the transgenic plants. A total of 1082 and 1072 proteins were profiled by proteomics under control and salt treatment, respectively, with 22 and 11 proteins uniquely identified under control and salt stress, respectively. Among the 11 proteins, 7 were increased and 4 were decreased after salt treatment. Most of the proteins whose expression increased in the McHB7 overexpression (OE) ice plants under high salinity were involved in transport regulation, catalytic activities, biosynthesis of secondary metabolites, and response to stimulus. The results demonstrate that the McHB7 transcription factor plays a positive role in improving plant salt tolerance.
Mesembryanthemum crystallinum (common ice plant) is one of the facultative halophyte plants, and it serves as a model for investigating the molecular mechanisms underlying its salt stress response and tolerance. Here we cloned one of the homeobox transcription factor (TF) genes, McHB7, from the ice plant, which has 60% similarity with the Arabidopsis AtHB7. Overexpression of the McHB7 in Arabidopsis (OE) showed that the plants had significantly elevated relative water content (RWC), chlorophyll content, superoxide dismutase (SOD), and peroxidase (POD) activities after salt stress treatment. Our proteomic analysis identified 145 proteins to be significantly changed in abundance, and 66 were exclusively increased in the OE plants compared to the wild type (WT). After salt treatment, 979 and 959 metabolites were significantly increased and decreased, respectively, in the OE plants compared to the WT. The results demonstrate that the McHB7 can improve photosynthesis, increase the leaf chlorophyll content, and affect the TCA cycle by regulating metabolites (e.g., pyruvate) and proteins (e.g., citrate synthase). Moreover, McHB7 modulates the expression of stress-related proteins (e.g., superoxide dismutase, dehydroascorbate reductase, and pyrroline-5-carboxylate synthase B) to scavenge reactive oxygen species and enhance plant salt tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.