P53 is shown recently to play an important role in the proliferation and differentiation of bone marrow mesenchymal stem cells (BMMSCs). In this study, by inhibiting p53-p21 pathway with p53 inhibitor (p-fifty three inhibitor-alpha, PFT-α), we investigated the resulting effects on the differentiation of rat BMMSCs into cardiomyocyte-like cells. BMMSCs were isolated from bone marrow of SD rats by density gradient centrifugation. The fourth passage cells were divided into four groups: control group, PFT-α group, 5-AZA group, and PFT-α + 5-AZA group. The purified BMMSCs were identified by surface antigens and the proliferation and apoptosis of BMMSCs were examined by MTT and flow cytometry analysis. The expression of cTnI and CX-43 in BMMSCs after induction was detected by immunofluorescence and that of cTnI, p53, and p21 was detected by western blot. Our results demonstrated that PFT-α at 20 μmol/l significantly reduced the apoptosis and promoted the proliferation of BMMSCs, and induced BMMSCs to differentiate into cardiomyocyte-like cells. In conclusion, these data open up new possibility of modulating p53-p21 pathway for directed differentiation of BMMSCs into cardiomyocytes, which will be valuable for cardiovascular regenerative medicine.
Bone morphogenetic protein-2 (BMP-2) has a crucial role in the development of cardiogenesis, and is used in inducing bone marrow mesenchymal stem cells (BMMSCs) to differentiate into cardiomyocytes. We have examined a combination of BMP-2 and 5-azacytidine (5-AZA) in inducing these differentiation effects. BMMSCs were collected and purified from bone marrow of 4-week-old Sprague-Dawley (SD) rats by density-gradient centrifugation and differential attachment. The fourth passage subculture of BMMSCs, selected by cytometry for purity and identification, was divided into four groups: a control group, BMP-2 treated, 5-AZA treated, and a combination of BMP-2 and 5-AZA treatment. Expression of cardiac Troponin I (cTnI) and Connexin 43 (CX-43) in BMMSCs after induction were detected by immunofluorescence and Western blot. Flow cytometry analysis was used for differentiation rates and apoptosis of induced BMMSCs, through the expression of cardiac Troponin T (cTnT) and Annexin V-FITC & PI kit, respectively. BMP-2 can ameliorate apoptosis of BMMSCs caused by 5-AZA and promote the differentiation of BMMSCs into cardiomyocyte-like cells. Thus a combination of BMP-2 and 5-AZA can significantly improve the cardiac differentiation with fewer cell damage effects, making it a safe and effective method of induction in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.