To increase the themosensitive behavior and antibacterial activity of cotton fabric, a series of poly (N-isopropylacrylamide)/chitosan (PNIPAAm/Cs) hydrogels was synthesized by interpenetrating polymer network (IPN) technology using a redox initiator. The IPN PNIPAAm/Cs hydrogel was characterized by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The results indicated that the IPN PNIPAAm/Cs hydrogel has a lower critical solution temperature (LCST) at 33 °C. The IPN hydrogel was then used to modify cotton fabric using glutaric dialdehyde (GA) as a crosslinking agent following a double-dip-double-nip process. The results demonstrated that the modified cotton fabric showed obvious thermosensitive behavior and antibacterial activity. The contact angle of the modified cotton fabric has a sharp rise around 33 °C, and the modified cotton fabric showed an obvious thermosensitive behavior. The bacterial reduction of modified cotton fabric against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were more than 99%. This study presents a valuable route towards smart textiles and their applications in functional clothing.
Abstract:Multifunctional mulberry silk fabrics with excellent temperature-and pH-sensitivity, antibacterial properties and permeability are successfully prepared by surface modification with PNIPAAm/chitosan/poly(ethylene oxide) nanofibers. The nanofibers deposited on the surface of mulberry silk fabric are produced by the electrospinning technique. The surface properties of mulberry silk fabrics were changed by coating process and glutaraldehyde vapor cross-linking technology. The PNIPAAm/chitosan/PEO nanofibers have good apparent morphology and uniform fiber diameter. The contact angle of modified mulberry silk obviously increases with the increasing temperature. The bacterial reduction rates of modification of mulberry silk against E. coli and S. aureus all reach above 80%. Permeability test results show that it can largely improve the poor permeability of coated fabric by intelligent nanofiber modification technology. The air permeability of temperature-and pH-sensitivity mulberry silk fabric modified with PNIPAAm/chitosan/PEO nanofibers, which has reached about 5.1 × 10 2 L/m 2 /s, is higher than that of the silk fabric coated with PNIPAAm/chitosan/PEO solution that reached 1.5 × 10 2 L/m 2 /s. The nanofibers coated with mulberry silk fabrics show outstanding temperature-and pH-sensitivity, antibacterial properties and permeability, and may be a potential application in medical care, intelligent materials and textiles.
There is a significant interest in developing environmentally responsive or stimuli-responsive smart materials. The purpose of this study was to investigate multi-function responsive cotton fabrics with surface modification on the nanoscale. Three technologies including electrospinning technology, interpenetrating polymer network technology, and cross-linking technology were applied to prepare the multi-function sericin/poly(N-isopropylacrylamide)/Poly(ethylene oxide) nanofibers, which were then grafted onto the surfaces of cotton textiles to endow the cotton textiles with outstanding stimuli-responsive functionalities. The multi-function responsive properties were evaluated via SEM, DSC, the pH-responsive swelling behavior test and contact angle measurements. The results demonstrate that with this method, multi-function responsive, including thermo- and pH-responsiveness, cotton fabrics were fast formed, and the stimuli-responsiveness of the materials was well controlled. In addition, the antimicrobial testing reveals efficient activity of cotton fabrics with the sericin/PNIPAM/PEO nanofiber treatments against Gram-positive bacteria and Gram-negative bacteria such as Staphylococcus aureus and Escherichia coli. The research shows that the presented strategy demonstrated the great potential of multi-function responsive cotton fabrics fabricated using our method.
At present, Antheraea pernyi silk fibroin (ASF) based hydrogels have wide potential applications as biomaterials because of its superior cytocompatibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.