The Animal QTL database (QTLdb; http://www.animalgenome.org/QTLdb) is designed to house all publicly available QTL and single-nucleotide polymorphism/gene association data on livestock animal species. An earlier version was published in the Nucleic Acids Research Database issue in 2007. Since then, we have continued our efforts to develop new and improved database tools to allow more data types, parameters and functions. Our efforts have transformed the Animal QTLdb into a tool that actively serves the research community as a quality data repository and more importantly, a provider of easily accessible tools and functions to disseminate QTL and gene association information. The QTLdb has been heavily used by the livestock genomics community since its first public release in 2004. To date, there are 5920 cattle, 3442 chicken, 7451 pigs, 753 sheep and 88 rainbow trout data points in the database, and at least 290 publications that cite use of the database. The rapid advancement in genomic studies of cattle, chicken, pigs, sheep and other livestock animals has presented us with challenges, as well as opportunities for the QTLdb to meet the evolving needs of the research community. Here, we report our progress over the recent years and highlight new functions and services available to the general public.
Pancreatic cancer is an increasingly common cause of cancer mortality with a tight correspondence between disease mortality and incidence. Furthermore, it is usually diagnosed at an advanced stage with a very dismal prognosis. Due to the high heterogeneity, metabolic reprogramming, and dense stromal environment associated with pancreatic cancer, patients benefit little from current conventional therapy. Recent insight into the biology and genetics of pancreatic cancer has supported its molecular classification, thus expanding clinical therapeutic options. In this review, we summarize how the biological features of pancreatic cancer and its metabolic reprogramming as well as the tumor microenvironment regulate its development and progression. We further discuss potential biomarkers for pancreatic cancer diagnosis, prediction, and surveillance based on novel liquid biopsies. We also outline recent advances in defining pancreatic cancer subtypes and subtype-specific therapeutic responses and current preclinical therapeutic models. Finally, we discuss prospects and challenges in the clinical development of pancreatic cancer therapeutics.
Phenotypic traits may exert causal effects between them. For example, on the one hand, high yield in dairy cows may increase the liability to certain diseases and, on the other hand, the incidence of a disease may affect yield negatively. Likewise, the transcriptome may be a function of the reproductive status in mammals and the latter may depend on other physiological variables. Knowledge of phenotype networks describing such interrelationships can be used to predict the behavior of complex systems, e.g. biological pathways underlying complex traits such as diseases, growth and reproduction. Structural Equation Models (SEM) can be used to study recursive and simultaneous relationships among phenotypes in multivariate systems such as genetical genomics, system biology, and multiple trait models in quantitative genetics. Hence, SEM can produce an interpretation of relationships among traits which differs from that obtained with traditional multiple trait models, in which all relationships are represented by symmetric linear associations among random variables, such as covariances and correlations. In this review, we discuss the application of SEM and related techniques for the study of multiple phenotypes. Two basic scenarios are considered, one pertaining to genetical genomics studies, in which QTL or molecular marker information is used to facilitate causal inference, and another related to quantitative genetic analysis in livestock, in which only phenotypic and pedigree information is available. Advantages and limitations of SEM compared to traditional approaches commonly used for the analysis of multiple traits, as well as some indication of future research in this area are presented in a concluding section.
Structural equation models (SEMs) are multivariate specifications capable of conveying causal relationships among traits. Although these models offer insights into how phenotypic traits relate to each other, it is unclear whether and how they can improve multiple-trait selection. Here, we explored concepts involved in SEMs, seeking for benefits that could be brought to breeding programs, relative to the standard multitrait model (MTM) commonly used. Genetic effects pertaining to SEMs and MTMs have distinct meanings. In SEMs, they represent genetic effects acting directly on each trait, without mediation by other traits in the model; in MTMs they express overall genetic effects on each trait, equivalent to lumping together direct and indirect genetic effects discriminated by SEMs. However, in breeding programs the goal is selecting candidates that produce offspring with best phenotypes, regardless of how traits are causally associated, so overall additive genetic effects are the matter. Thus, no information is lost in standard settings by using MTM-based predictions, even if traits are indeed causally associated. Nonetheless, causal information allows predicting effects of external interventions. One may be interested in predictions for scenarios where interventions are performed, e.g., artificially defining the value of a trait, blocking causal associations, or modifying their magnitudes. We demonstrate that with information provided by SEMs, predictions for these scenarios are possible from data recorded under no interventions. Contrariwise, MTMs do not provide information for such predictions. As livestock and crop production involves interventions such as management practices, SEMs may be advantageous in many settings.S TRUCTURAL equation models (SEMs) (Wright 1921;Haavelmo 1943) are multivariate models that account for causal associations between variables. They were adapted to the quantitative genetics mixed-effects models settings by Gianola and Sorensen (2004). These models can be viewed as extensions of the standard multiple-trait models (MTMs) (Henderson and Quaas 1976) that are capable of expressing functional networks among traits. Gianola and Sorensen also investigated statistical consequences of causal associations between two traits when they are studied in terms of MTM parameters, expressed as functions of SEM parameters. Additionally, these authors developed inference techniques by providing likelihood functions and posterior distributions for Bayesian analysis and addressed identifiability issues inherent to structural equation modeling.The work of Gianola and Sorensen (2004) was followed by several applications of SEMs to different species and traits, such as dairy goats (de los Campos et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.