For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ~1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
BackgroundThe dissection of complex traits of economic importance to the pig industry requires the availability of a significant number of genetic markers, such as single nucleotide polymorphisms (SNPs). This study was conducted to discover several hundreds of thousands of porcine SNPs using next generation sequencing technologies and use these SNPs, as well as others from different public sources, to design a high-density SNP genotyping assay.Methodology/Principal FindingsA total of 19 reduced representation libraries derived from four swine breeds (Duroc, Landrace, Large White, Pietrain) and a Wild Boar population and three restriction enzymes (AluI, HaeIII and MspI) were sequenced using Illumina's Genome Analyzer (GA). The SNP discovery effort resulted in the de novo identification of over 372K SNPs. More than 549K SNPs were used to design the Illumina Porcine 60K+SNP iSelect Beadchip, now commercially available as the PorcineSNP60. A total of 64,232 SNPs were included on the Beadchip. Results from genotyping the 158 individuals used for sequencing showed a high overall SNP call rate (97.5%). Of the 62,621 loci that could be reliably scored, 58,994 were polymorphic yielding a SNP conversion success rate of 94%. The average minor allele frequency (MAF) for all scorable SNPs was 0.274.Conclusions/SignificanceOverall, the results of this study indicate the utility of using next generation sequencing technologies to identify large numbers of reliable SNPs. In addition, the validation of the PorcineSNP60 Beadchip demonstrated that the assay is an excellent tool that will likely be used in a variety of future studies in pigs.
We report the highest density genetic linkage map for a livestock species produced to date. Three published maps for Sus scrofa were merged by genotyping virtually every publicly available microsatellite across a single reference population to yield 1042 linked loci, 536 of which are novel assignments, spanning 2286.2 cM (average interval 2.23 cM) in 19 linkage groups 08 autosomal and X chromosomes, n = 19). Linkage groups were constructed de novo and mapped by locus content to avoid propagation of errors in older genotypes. The physical and genetic maps were integrated with 123 informative loci assigned previously by fluorescence in situ hybridization {FISH). Fourteen linkage groups span the entire length of each chromosome. Coverage of chromosomes 11, 12, 15, and 18 will be evaluated as more markers are physically assigned. Marker-deficient regions were identified only on Ilql.7-qter and 14 cen-ql.2. Recombination rates [cM/Mbp) varied between and within chromosomes. Short chromosomal arms recombined at higher rates than long arms, and recombination was more frequent in telomeric regions than in pericentric regions. The high-resolution comprehensive map has the marker density needed to identify quantitative trait loci [QTL), implement marker-assisted selection or introgression and YAC contig construction or chromosomal microdissection.
The Animal QTL database (QTLdb; http://www.animalgenome.org/QTLdb) is designed to house all publicly available QTL and single-nucleotide polymorphism/gene association data on livestock animal species. An earlier version was published in the Nucleic Acids Research Database issue in 2007. Since then, we have continued our efforts to develop new and improved database tools to allow more data types, parameters and functions. Our efforts have transformed the Animal QTLdb into a tool that actively serves the research community as a quality data repository and more importantly, a provider of easily accessible tools and functions to disseminate QTL and gene association information. The QTLdb has been heavily used by the livestock genomics community since its first public release in 2004. To date, there are 5920 cattle, 3442 chicken, 7451 pigs, 753 sheep and 88 rainbow trout data points in the database, and at least 290 publications that cite use of the database. The rapid advancement in genomic studies of cattle, chicken, pigs, sheep and other livestock animals has presented us with challenges, as well as opportunities for the QTLdb to meet the evolving needs of the research community. Here, we report our progress over the recent years and highlight new functions and services available to the general public.
Successful development of biological databases requires accommodation of the burgeoning amounts of data from high-throughput genomics pipelines. As the volume of curated data in Animal QTLdb (https://www.animalgenome.org/QTLdb) increases exponentially, the resulting challenges must be met with rapid infrastructure development to effectively accommodate abundant data curation and make metadata analysis more powerful. The development of Animal QTLdb and CorrDB for the past 15 years has provided valuable tools for researchers to utilize a wealth of phenotype/genotype data to study the genetic architecture of livestock traits. We have focused our efforts on data curation, improved data quality maintenance, new tool developments, and database co-developments, in order to provide convenient platforms for users to query and analyze data. The database currently has 158 499 QTL/associations, 10 482 correlations and 1977 heritability data as a result of an average 32% data increase per year. In addition, we have made >14 functional improvements or new tool implementations since our last report. Our ultimate goals of database development are to provide infrastructure for data collection, curation, and annotation, and more importantly, to support innovated data structure for new types of data mining, data reanalysis, and networked genetic analysis that lead to the generation of new knowledge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.