Classic photometric stereo is often extended to deal with real-world materials and work with unknown lighting conditions for practicability. To quantitatively evaluate non-Lambertian and uncalibrated photometric stereo, a photometric stereo image dataset containing objects of various shapes with complex reflectance properties and high-quality ground truth normals is still missing. In this paper, we introduce the 'DiLiGenT' dataset with calibrated Directional Lightings, objects of General reflectance with different shininess, and 'ground Truth' normals from high-precision laser scanning. We use our dataset to quantitatively evaluate state-of-the-art photometric stereo methods for general materials and unknown lighting conditions, selected from a newly proposed photometric stereo taxonomy emphasizing on non-Lambertian and uncalibrated methods. The dataset and evaluation results are made publicly available, and we hope it can serve as a benchmark platform that inspires future research.
Learning portable neural networks is very essential for computer vision for the purpose that pre-trained heavy deep models can be well applied on edge devices such as mobile phones and micro sensors. Most existing deep neural network compression and speed-up methods are very effective for training compact deep models, when we can directly access the training dataset. However, training data for the given deep network are often unavailable due to some practice problems (e.g. privacy, legal issue, and transmission), and the architecture of the given network are also unknown except some interfaces. To this end, we propose a novel framework for training efficient deep neural networks by exploiting generative adversarial networks (GANs). To be specific, the pre-trained teacher networks are regarded as a fixed discriminator and the generator is utilized for derivating training samples which can obtain the maximum response on the discriminator. Then, an efficient network with smaller model size and computational complexity is trained using the generated data and the teacher network, simultaneously. Efficient student networks learned using the proposed Data-Free Learning (DAFL) method achieve 92.22% and 74.47% accuracies using ResNet-18 without any training data on the CIFAR-10 and CIFAR-100 datasets, respectively. Meanwhile, our student network obtains an 80.56% accuracy on the CelebA benchmark.
Abstract. We present a new approach to robustly solve photometric stereo problems. We cast the problem of recovering surface normals from multiple lighting conditions as a problem of recovering a low-rank matrix with both missing entries and corrupted entries, which model all types of non-Lambertian effects such as shadows and specularities. Unlike previous approaches that use Least-Squares or heuristic robust techniques, our method uses advanced convex optimization techniques that are guaranteed to find the correct low-rank matrix by simultaneously fixing its missing and erroneous entries. Extensive experimental results demonstrate that our method achieves unprecedentedly accurate estimates of surface normals in the presence of significant amount of shadows and specularities. The new technique can be used to improve virtually any photometric stereo method including uncalibrated photometric stereo.
This paper proposes an uncalibrated photometric stereo method for non-Lambertian scenes based on deep learning. Unlike previous approaches that heavily rely on assumptions of specific reflectances and light source distributions, our method is able to determine both shape and light directions of a scene with unknown arbitrary reflectances observed under unknown varying light directions. To achieve this goal, we propose a two-stage deep learning architecture, called SDPS-Net, which can effectively take advantage of intermediate supervision, resulting in reduced learning difficulty compared to a single-stage model. Experiments on both synthetic and real datasets show that our proposed approach significantly outperforms previous uncalibrated photometric stereo methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.