BLEU is the de facto standard machine translation (MT) evaluation metric. However, because BLEU computes a geometric mean of n-gram precisions, it often correlates poorly with human judgment on the sentence-level.Therefore, several smoothing techniques have been proposed. This paper systematically compares 7 smoothing techniques for sentence-level BLEU. Three of them are first proposed in this paper, and they correlate better with human judgments on the sentence-level than other smoothing techniques. Moreover, we also compare the performance of using the 7 smoothing techniques in statistical machine translation tuning.
ive Sentence Summarization (AS-SUM) targets at grasping the core idea of the source sentence and presenting it as the summary. It is extensively studied using statistical models or neural models based on the large-scale monolingual source-summary parallel corpus. But there is no cross-lingual parallel corpus, whose source sentence language is different to the summary language, to directly train a cross-lingual ASSUM system. We propose to solve this zero-shot problem by using resource-rich monolingual AS-SUM system to teach zero-shot cross-lingual ASSUM system on both summary word generation and attention. This teaching process is along with a back-translation process which simulates source-summary pairs. Experiments on cross-lingual ASSUM task show that our proposed method is significantly better than pipeline baselines and previous works, and greatly enhances the cross-lingual performances closer to the monolingual performances. We release the code and data at https://github.com/KelleyYin/ Cross-lingual-Summarization.
kNN-MT, recently proposed by Khandelwal et al. (2020a), successfully combines pretrained neural machine translation (NMT) model with token-level k-nearest-neighbor (kNN) retrieval to improve the translation accuracy. However, the traditional kNN algorithm used in kNN-MT simply retrieves a same number of nearest neighbors for each target token, which may cause prediction errors when the retrieved neighbors include noises. In this paper, we propose Adaptive kNN-MT to dynamically determine the number of k for each target token. We achieve this by introducing a light-weight Meta-k Network, which can be efficiently trained with only a few training samples. On four benchmark machine translation datasets, we demonstrate that the proposed method is able to effectively filter out the noises in retrieval results and significantly outperforms the vanilla kNN-MT model. Even more noteworthy is that the Meta-k Network learned on one domain could be directly applied to other domains and obtain consistent improvements, illustrating the generality of our method. Our implementation is open-sourced at https://github. com/zhengxxn/adaptive-knn-mt.
Transfer learning between different language pairs has shown its effectiveness for Neural Machine Translation (NMT) in low-resource scenario. However, existing transfer methods involving a common target language are far from success in the extreme scenario of zero-shot translation, due to the language space mismatch problem between transferor (the parent model) and transferee (the child model) on the source side. To address this challenge, we propose an effective transfer learning approach based on cross-lingual pre-training. Our key idea is to make all source languages share the same feature space and thus enable a smooth transition for zero-shot translation. To this end, we introduce one monolingual pre-training method and two bilingual pre-training methods to obtain a universal encoder for different languages. Once the universal encoder is constructed, the parent model built on such encoder is trained with large-scale annotated data and then directly applied in zero-shot translation scenario. Experiments on two public datasets show that our approach significantly outperforms strong pivot-based baseline and various multilingual NMT approaches.
The goal of WMT 2018 Shared Task on Translation Quality Estimation is to investigate automatic methods for estimating the quality of machine translation results without reference translations. This paper presents the QE Brain system, which proposes the neural Bilingual Expert model as a feature extractor based on conditional target language model with a bidirectional transformer and then processes the semantic representations of source and the translation output with a Bi-LSTM predictive model for automatic quality estimation. The system has been applied to the sentence-level scoring and ranking tasks as well as the wordlevel tasks for finding errors for each word in translations. An extensive set of experimental results have shown that our system outperformed the best results in WMT 2017 Quality Estimation tasks and obtained top results in WMT 2018. * * indicates equal contribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.