Abstract. The paper discusses the usage of unlabeled data for Spanish Named Entity Recognition. Two techniques have been used: selftraining for detecting the entities in the text and co-training for classifying these already detected entities. We introduce a new co-training algorithm, which applies voting techniques in order to decide which unlabeled example should be added into the training set at each iteration. A proposal for improving the performance of the detected entities has been made. A brief comparative study with already existing co-training algorithms is demonstrated.
Abstract. In this paper, we propose a novel method for the unsupervised clustering of graphs in the context of the constellation approach to object recognition. Such method is an EM central clustering algorithm which builds prototypical graphs on the basis of fast matching with graph transformations. Our experiments, both with random graphs and in realistic situations (visual localization), show that our prototypes improve the set median graphs and also the prototypes derived from our previous incremental method. We also discuss how the method scales with a growing number of images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.