Sensor platforms that exploit the fibrous textile threads as substrates offer great promise since they can be directly sewn, woven or stitched on to any clothing. They can also be placed directly in intimate contact with the skin. In this work, we present a threadbased sensing platform in the form of a multiplexed sensing patch for continuous simultaneous on-skin monitoring of sweat. The patch performs real-time, on-body measurements of important biomarkers present in sweat such as electrolytes (sodium and ammonium ions), metabolites (lactate) and acidity (pH). Flexible threads coated with conductive inks were used as sensing electrodes. Selective potentiometric detection of electrolytes and pH was made possible through ion-selective membrane deposition and pH-sensitive polyaniline coating on threads, respectively. An amperometric enzymatic sensing scheme with lactate oxidase was used for the detection of lactate. An array of the thread sensors is integrated onto a patch with connectivity to a miniaturized circuit module containing a potentiostat, microprocessor and wireless circuitry for wireless smartphone readout. Extensive in vitro validation and an in vivo human pilot study involving a maximal exertion test show the promise of this platform for real-time physiological monitoring of human performance/fitness under stress, as well as diagnostic monitoring through sweat analysis.
We demonstrated the potential of using domain adaptation on functional Near-Infrared Spectroscopy (fNIRS) data to detect and discriminate different levels of n-back tasks that involve working memory across different experiment sessions and subjects. Aim: To address the domain shift in fNIRS data across sessions and subjects for task label alignment, we exploited two domain adaptation approaches -Gromov-Wasserstein (G-W) and Fused Gromov-Wasserstein (FG-W). Approach: We applied G-W for session-by-session alignment and FG-W for subject-by-subject alignment with Hellinger distance as underlying metric to fNIRS data acquired during different n-back task levels. We also compared with a supervised method -Convolutional Neural Network (CNN). Results: For session-by-session alignment, using G-W resulted in alignment accuracy of 70 ± 4 % (weighted mean ± standard error), whereas using CNN resulted in classification accuracy of 58 ± 5 % across five subjects. For subject-by-subject alignment, using FG-W resulted in alignment accuracy of 55 ± 3 %, whereas using CNN resulted in classification accuracy of 45 ± 1 %. Where in both cases 25 % represents chance. We also showed that removal of motion artifacts from the fNIRS data plays an important role in improving alignment performance. Conclusions: Domain adaptation is potential for session-by-session and subject-by-subject alignment using fNIRS data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.