Liquefied nature gas (LNG) is a green energy. LNG-fueled vessels are extremely complex engineering systems. In view of the inherent hazardous properties of LNG fuel, LNG fueling is not only an important part, but it is also full of high risks in the operation of LNG-fueled vessels (LNGFVs). Therefore, it is necessary to study the risk factors, and the intrinsic relationship among them between the LNG and the vessel, and to simulate the system dynamics in the process of LNGFV operation. During the process of fueling of LNGFV, at every moment the vessel interacts with the energy and information of the surrounding environment. First, the impact of the three interactions of the fueling operation process, ship factors, and environmental factors were analyzed on the risk of fueling operation, and a complete node system was proposed as to the complex system dynamics mode. Second, by analyzing the boundary conditions of the system, the relationship of factors was established via the tools of system dynamics (SD). Based on the catastrophe theory (CA), the dynamics model for the fueling of LNG is set up to study the system’s risk mutation phenomenon. Third, combined with the simulation results of the case analysis, the risk evolution mode of the LNGFV during the fueling process was obtained, and constructive opinions were put forward for improving the safe fueling of the LNGFV. Application examples show that formal description of risk emergence and transition is a prerequisite for the quantitative analysis of the risk evolution mode. In order to prevent accidents, the coupling synchronization of risk emergence should be weakened, and meanwhile risk control should be implemented.
The ability of a new SBR (sequencing batch reactor) based on simulating photovoltaic aeration for maintaining nitrification activity under a 25-day starvation period was studied. The activity and abundance of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) and the diversity of AOB were investigated. The measured biomass decay rates were 0.017 day(-1) and 0.029 day(-1) for AOB and NOB, respectively. These decay rates correlated well with AOB and NOB population quantified by real-time PCR. The recovery of ammonia oxidation rate and nitrite oxidation rate needed 4 and 7 days, respectively, indicating that NOB was more affected than AOB by starvation conditions. According to the real-time PCR results, Nitrospira was the dominant NOB in the reactor. Phylogenetic analysis indicated that Nitrosomonas oligotropha cluster was the dominant major cluster before and after starvation. Moreover, Pareto-Lorenz evenness distribution curves were plotted to interpret the interspecies abundance of AOB; the results suggested that AOB community possessed a balanced structure with medium Fo (Functional organization). Thus, the community can potentially deal with changing environmental conditions (e.g., starvation) and preserve its functionality according to the concept of functional redundancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.