The development of highly efficient electrocatalysts to reduce overpotentials is vital for accelerating the sluggish oxygen evolution reaction (OER) processes. Herein, we demonstrate ultrathin heterogeneous nanosheets as a promising OER electrocatalyst, which are composed of ultrafine CoFeO x nanoparticles and a monolayered CoN 4 -based metal− organic framework (MOF) matrix. The embedding of such inorganic nanoparticles in the MOF lattice creates metal Co sites located at the CoFeO x /MOF interfaces. Structural characterization and analysis indicated a higher valence and changed 3d electronic configuration for the interfacial Co in contrast to the CoN 4 sites. Furthermore, theoretical calculations reveal the high activity of interfacial Co sites for OER. Electrochemical studies confirm that the ultrathin heterogeneous nanosheets deposited on carbon cloth can achieve an excellent electrocatalytic OER performance with a low overpotential of 232 mV at a current density of 10 mA cm −2 with good stability. This work provides insights on the development of ultrathin OER heterocatalysts with highly active interfaces of inorganic units and MOFs.
Background
The relationship between transcription and the 3D chromatin structure is debated. Multiple studies have shown that transcription affects global Cohesin binding and 3D genome structures. However, several other studies have indicated that inhibited transcription does not alter chromatin conformations.
Results
We provide the most comprehensive evidence to date to demonstrate that transcription plays a relatively modest role in organizing the local, small-scale chromatin structures in mammalian cells. We show degraded Pol I, Pol II, and Pol III proteins in mESCs cause few or no changes in large-scale 3D chromatin structures, selected RNA polymerases with a high abundance of binding sites or active promoter-associated interactions appear to be relatively more affected after the degradation, transcription inhibition alters local, small loop domains, as indicated by high-resolution chromatin interaction maps, and loops with bound Pol II but without Cohesin or CTCF are identified and found to be largely unchanged after transcription inhibition. Interestingly, Pol II depletion for a longer time significantly affects the chromatin accessibility and Cohesin occupancy, suggesting that RNA polymerases are capable of affecting the 3D genome indirectly. These direct and indirect effects explain the previous inconsistent findings on the influence of transcription inhibition on the 3D genome.
Conclusions
We conclude that Pol I, Pol II, and Pol III loss alters local, small-scale chromatin interactions in mammalian cells, suggesting that the 3D chromatin structures are pre-established and relatively stable.
K. (2019). 3D printing of mixed matrix films based on metal-organic frameworks and thermoplastic polyamide 12 by selective laser sintering for water applications. ACS Applied Materials & Interfaces, 11(43), 40564-40574.
The studies on the autonomous electric vehicle are quite attractive due to fewer human-induced errors and improved safety in recent years. Extensive research has been done on the autonomous steering control of the mobile robot, but study on the on-road autonomous electric vehicle is still limited. This paper proposes a potential field method to achieve the trajectory control of the autonomous electric vehicle with in-wheel motors. Instead of strictly following a desired path, this method can form a steering corridor with a desired tracking error tolerance and the vehicle can be steered smoothly with less control effort. In this paper, the innovative potential filed function is presented first to determine the desired vehicle yaw angle. Then, according to this desired yaw angle, a two-level trajectory controller is proposed to achieve the trajectory control. Simulation results are shown to prove that this suggested trajectory controller can successfully control the vehicle to move within the desired road boundary and improve the handling and stability performance of the vehicle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.