Particle swarm optimization (PSO) is a popular method widely used in solving different optimization problems. Unfortunately, in the case of complex multidimensional problems, PSO encounters some troubles associated with the excessive loss of population diversity and exploration ability. This leads to a deterioration in the effectiveness of the method and premature convergence. In order to prevent these inconveniences, in this paper, a learning competitive swarm optimization algorithm (LCSO) based on the particle swarm optimization method and the competition mechanism is proposed. In the first phase of LCSO, the swarm is divided into sub-swarms, each of which can work in parallel. In each sub-swarm, particles participate in the tournament. The participants of the tournament update their knowledge by learning from their competitors. In the second phase, information is exchanged between sub-swarms. The new algorithm was examined on a set of test functions. To evaluate the effectiveness of the proposed LCSO, the test results were compared with those achieved through the competitive swarm optimizer (CSO), comprehensive particle swarm optimizer (CLPSO), PSO, fully informed particle swarm (FIPS), covariance matrix adaptation evolution strategy (CMA-ES) and heterogeneous comprehensive learning particle swarm optimization (HCLPSO). The experimental results indicate that the proposed approach enhances the entropy of the particle swarm and improves the search process. Moreover, the LCSO algorithm is statistically and significantly more efficient than the other tested methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.