Recently, many studies have been conducted trying to explain the molecular mechanism of curcumin action in various pathological states of the cell and the organism. Curcumin is considered to play a role in the regulation of T‐lymphocytes function in the lymphoid tissue of the large intestine, apoptosis of the human papilloma and the activity of the 26S proteasome, and p53 level. Research works have shown that curcumin in tumor can regulate reactive oxygen species (ROS) and cytosolic calcium ion level as well as affect other signaling molecules [nuclear factor kappa B (NF‐KB), cytokines] triggering endoplasmic reticulum and mitochondrial stress, and thus contributing to death of cancer cells. Curcumin can also arrest of the cell cycle in the G2/M phase leading to apoptosis and/or reduction in cancer cells proliferation. Moreover, curcumin is capable of crossing the blood–brain barrier, and thus it may protect the neurons from oxidative stress and inflammation. Finally, curcumin may play a role in cardiological protection and it is possible to use it in the protection of liver and spleen against oxidative and inflammatory injury. Among signaling pathways regulated by curcumin, the most important seem to be those related with regulation of oxidative stress and inhibition of NF‐кB activity.
Benzo[a]pyrene (B[a]P) is the main representative of polycyclic aromatic hydrocarbons (PAHs), and has been repeatedly found in the air, surface water, soil, and sediments. It is present in cigarette smoke as well as in food products, especially when smoked and grilled. Human exposure to B[a]P is therefore common. Research shows growing evidence concerning toxic effects induced by this substance. This xenobiotic is metabolized by cytochrome P450 (CYP P450) to carcinogenic metabolite: 7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), which creates DNA adducts, causing mutations and malignant transformations. Moreover, B[a]P is epigenotoxic, neurotoxic, and teratogenic, and exhibits pro-oxidative potential and causes impairment of animals’ fertility. CYP P450 is strongly involved in B[a]P metabolism, and it is simultaneously expressed as a result of the association of B[a]P with aromatic hydrocarbon receptor (AhR), playing an essential role in the cancerogenic potential of various xenobiotics. In turn, polymorphism of CYP P450 genes determines the sensitivity of the organism to B[a]P. It was also observed that B[a]P facilitates the multiplication of viruses, which may be an additional problem with the widespread COVID-19 pandemic. Based on publications mainly from 2017 to 2022, this paper presents the occurrence of B[a]P in various environmental compartments and human surroundings, shows the exposure of humans to this substance, and describes the mechanisms of its toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.