The South Indian Ocean subtropical gyre has been described as a unique environment where anticyclonic ocean eddies highlight enhanced surface chlorophyll in winter. The processes responsible for this chlorophyll increase in anticyclones have remained elusive, primarily because previous studies investigating this unusual behavior were mostly based on satellite data, which only views the ocean surface. Here we present in situ data from an oceanographic voyage focusing on the mesoscale variability of biogeochemical variables across the subtropical gyre. During this voyage an autonomous biogeochemical profiling float transected an anticyclonic eddy, recording its physical and biological state over a period of 6 weeks. We show that several processes might be responsible for the eddy/chlorophyll relationship, including horizontal advection of productive waters and deeper convective mixing in anticyclonic eddies. While a deep chlorophyll maximum is present in the subtropical Indian Ocean outside anticyclonic eddies, mixing reaches deeper in anticyclonic eddy cores, resulting in increased surface chlorophyll due to the stirring of the deep chlorophyll maximum and possibly resulting in new production from nitrate injection below the deep chlorophyll maximum.
This article presents the raw and analysed data on the absorption features of 30 pigments commonly occurring in phytoplankton. All unprocessed absorption spectra are given between 350 and 800 nm. The presented data also gives information on the wavelength of the main absorption peaks together with associated magnitudes of the concentration-specific absorption coefficient.
Abstract:Eutrophication is an increasing problem in coastal waters of the Baltic Sea. Moreover, algal blooms, which occur every summer in the Gulf of Gdansk can deleteriously impact human health, the aquatic environment, and economically important fisheries, tourism, and recreation industries. Traditional laboratory-based techniques for water monitoring are expensive and time consuming, which usually results in limited numbers of observations and discontinuity in space and time. The use of hyperspectral radiometers for coastal water observation provides the potential for more detailed remote optical monitoring. A statistical approach to develop local models for the estimation of optically significant components from in situ measured hyperspectral remote sensing reflectance in case 2 waters is presented in this study. The models, which are based on empirical orthogonal function (EOF) analysis and stepwise multilinear regression, allow for the estimation of parameters strongly correlated with phytoplankton (pigment concentration, absorption coefficient) and coloured detrital matter abundance (absorption coefficient) directly from reflectance spectra measured in situ. Chlorophyll a concentration, which is commonly used as a proxy for phytoplankton biomass, was retrieved with low error (median percent difference, MPD = 17%, root mean square error RMSE = 0.14 in log 10 space) and showed a high correlation with chlorophyll a measured in situ (R = 0.84). Furthermore, phycocyanin and phycoerythrin, both characteristic pigments for cyanobacteria species, were also retrieved reliably from reflectance with MPD = 23%, RMSE = 0.23, R 2 = 0.77 and MPD = 24%, RMSE = 0.15, R 2 = 0.74, respectively. The EOF technique proved to be accurate in the derivation of the absorption spectra of phytoplankton and coloured detrital matter (CDM), with R 2 (λ) above 0.83 and RMSE around 0.10. The approach was also applied to satellite multispectral remote sensing reflectance data, thus allowing for improved temporal and spatial resolution compared with the in situ measurements. The EOF method tested on simulated Medium Resolution Imaging Spectrometer (MERIS) or Ocean and Land Colour Instrument (OLCI) data resulted in RMSE = 0.16 for chl-a and RMSE = 0.29 for phycocyanin. The presented methods, applied to both in situ and satellite data, provide a powerful tool for coastal monitoring and management.
The optical properties, i.e., absorption and scattering spectra of ten strains of cyanobacteria from the Baltic Sea and Pomeranian lakes (Aphanizomenon flos-aquae KAC 15, Microcystis aeruginosa CCNP 1101, Anabaena sp. CCNP 1406, Synechocystis salina CCNP 1104, Phormidium sp. CCNP 1317, Nodularia spumigena CCNP 1401, Synechococcus sp. CCNP 1108, Nostoc sp. CCNP 1411, Cyanobacterium sp. CCNP 1105, Pseudanabaena cf. galeata CCNP 1312) grown under low light conditions were investigated. Moreover, the chlorophylls, carotenoids, and phycobilin composition as well as the size structure of chosen cyanobacteria were measured. Studied species revealed high diversity both in optical properties with the absorption spectra similarity index ranging from 0.67 to 0.94 and the pigment composition. The chlorophyll-specific absorption coefficient at 440 nm aph*(440) varied between 0.017 and 0.065 m2 mg−1. The influence of the package effect was only observed in the case of large filamentous cyanobacteria like N. spumigena or Nostoc sp. Interestingly, the package effect factor Qa*(675) for large-celled Anabaena sp. was 0.92. Besides chlorophyll a, only echinenone, β-carotene, and phycocyanin were present in all analyzed cyanobacteria strains. Zeaxanthin, which is widely used as a marker pigment for cyanobacteria, was absent in the toxic N. spumigena and Anabaena sp., which are the species that occur in the Baltic Sea most frequently causing summer cyanobacterial blooms. The investigation also showed that the sample preservation technique can introduce some major errors within the absorption band affected by the phycocyanin absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.