The aim of the current paper is to review the available literature reporting on comparative studies of heat-cured resins and three-dimensionally printed biomaterials for denture bases in terms of their composition, properties, fabrication techniques and clinical performance. The methodology included applying a search strategy, defining inclusion and exclusion criteria, selecting studies to summarize the results. Searches of PubMed, Scopus, and Embase databases were performed independently by three reviewers to gather literature published between 2018 and 2021. A total of 135 titles were obtained from the electronic databases, and the application of exclusion criteria resulted in the identification of 42 articles pertaining to conventional and 3D printed technology for removable dentures. The main disadvantages of the heat-cured resins for removable dentures are that they require lots of special equipment, skilled personnel and time. Emerging technologies, such as 3D printed dentures, have the potential to alleviate these problems allowing for faster patient rehabilitation. With the development of digital dentistry, it is becoming increasingly necessary to use 3D printed resin materials for the manufacturing of removable dentures. However, further research is required on the existing and developing materials to allow for advancement and increase its application in removable prosthodontics.
The aim of the current study was to evaluate the dimensional changes and ultimate tensile strength in three polyamide materials for denture bases fabrication through injection molding, subjected to artificial aging and different storage conditions. A total of 333 test specimens fabricated from Biosens (BS; Perflex, Netanya, Israel), Bre.flex 2nd edition (BF; Bredent, Senden, Germany) and ThermoSens (TS; Vertex Dental B.V., Soesterberg, The Netherlands)—n = 111 per material—were equally divided into three groups (n = 37) based on different treatments and storage conditions. Test samples allocated to the “Control group” were not artificially aged and stored in water for 24 h. Both “Treatment 1 group” and “Treatment 2 group” were subjected to thermocycling, the former dehydrated and the latter stored in water between cycle-sets. Linear changes and ultimate tensile strength were measured and analyzed for storage condition and material influence on the outcome variables. A Welch ANOVA test with Games–Howell post-hoc analysis was used to compare the influence of treatments across different materials. Significant differences were found for all three included materials with p values ranging from <0.05 to <0.001 for linear dimensional changes. The magnitude of alterations varied and was large for BS (Perflex, Israel) (ω2 = 0.62) and BF (Bredent, Germany) (ω2 = 0.47) and small but significant for TS (Vertex Dental B.V., The Netherlands) (ω2 = 0.05). However, results seem to fall into clinically acceptable range. Significant differences were also observed for the ultimate tensile strength test with the same range of p-values. All three materials showed different initial ultimate tensile strengths and varying reaction to artificial aging and storage with the lowest alterations observed for BF (Bredent, Germany) (ω2 = 0.05). Within the limitation of this study, it can be concluded that all three materials show different dimensional and mechanical properties when subjected to artificial aging and different storage. Although linear dimensions show significant changes, they seem to be clinically irrelevant, whereas the change in ultimate tensile strength after only 6-month equivalent clinical use was substantial for BS (Perflex, Israel) and TS (Vertex Dental B.V., The Netherlands).
Contemporary thermoplastic monomer-free prosthetic materials are widely used nowadays, and there are a great variety available on the market. These materials are of interest in terms of the improvement of the quality features of the removable dentures. The aim of this study is to establish how minimal changes in the laboratory protocol of polyamide prosthetic base materials influence the surface texture. Two polyamide materials intended for the fabrication of removable dentures bases were used—Perflex Biosens (BS) and VertexTM ThermoSens (TS). A total number of 20 coin-shaped samples were prepared. They were injected under two different modes—regular, as provided by the manufacturer, and modified, proposed by the authors of this study. Scanning electronic microscopy (SEM) under four magnifications—×1000, ×3000, ×5000, and ×10,000—was conducted. With minimal alterations to the melting temperature (5 °C) and the pressure (0.5 Bar), in Biosens, no changes in terms of surface improvement were found, whereas in ThermoSens, the surface roughness of the material significantly changed in terms of roughness reduction. By modifying the technological mode during injection molding, a smoother surface was achieved in one of the studied materials.
This study investigated the colour stability of three dimensional (3D)-printed and conventional denture teeth after immersion in different colourants. A total of 60 artificial maxillary central incisors were selected from three types of materials: 3D-printed dental resin (NextDent, 3D Systems, Soesterberg, The Netherlands), prefabricated acrylic teeth in Ivostar Shade (Ivoclar Vivadent, Schaan, Liechtenstein), and SpofaDent Plus in shade A2 (SpofaDental, Jičín, Czechia). These were immersed in four types of colourants at room temperature (23 °C ± 1 °C), including artificial saliva (pH = 6.8) as a control group, coffee, red wine, and Coca-Cola (n = 5). The temperature and the pH of the colouring agents were maintained throughout all immersion periods. After 7 days (T1), 14 days (T2), and 21 days (T3), the ∆E values were measured with a SpectroShade Micro (SpectroShade, Oxnard, CA, USA) spectrophotometer. Their means were then calculated and compared by two-way ANOVA. The independent factors, immersion time and different staining solutions, as well as the interaction between these factors, significantly influenced ΔE. The highest and the lowest mean ∆Es were recorded for prefabricated teeth in red wine, and 3D-printed teeth in artificial saliva, respectively. All the specimens demonstrated an increased colour change at T1 compared to T3, and the difference in mean ∆E was statistically significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.