In order to address the poor stability of the betacyanins from red pitaya (Hylocereus polyrhizus, HP), which are considered as good sources of natural colorant, liposomal-encapsulation technique was applied in this study. Thin-layer dispersion method was employed to prepare HP betacyacnin liposomes (HPBL). The formulation parameters for HPBL were optimized, and the characteristics, stability, and release profile of HPBL in in vitro gastrointestinal systems were evaluated.Results showed that an HP betacyanin encapsulation efficiency of 93.43 ± 0.11% was obtained after formulation optimization. The HPBL exhibited a narrow size distribution of particle within a nanometer range and a strong electronegative ζ-potential. By liposomal encapsulation, storage stability of HP betacyanin was significantly enhanced in different storage temperatures. When the environmental pH ranged from 4.3–7.0, around 80% of HP betacyanins were preserved on Day 21 with the liposomal protection. The loss of 2,2′-Diphenyl-picrylhydrazyl (DPPH) scavenging activity and color deterioration of HPBL were developed in accordance with the degradation of HP betacyanins during storage. In in vitro gastrointestinal digestion study, with the protection of liposome, the retention rates of HP betacyanins in vitro were enhanced by 14% and 40% for gastric and intestinal digestion, respectively.This study suggested that liposomal encapsulation was an effective approach to stabilize HP betacyanins during storage and gastrointestinal digestion, but further investigations were needed to better optimize the liposomal formulation and understand the complex liposomal system.
Respiration rate is an essential vital sign that requires monitoring under various conditions, including in strong electromagnetic environments such as in magnetic resonance imaging systems. To provide an electromagnetically-immune breath-sensing system, we propose an all-fiber-optic wearable breath sensor based on a fiber-tip microcantilever. The microcantilever was fabricated on a fiber-tip by two-photon polymerization microfabrication based on femtosecond laser, so that a micro Fabry–Pérot (FP) interferometer was formed between the microcantilever and the end-face of the fiber. The cavity length of the micro FP interferometer was reduced as a result of the bending of the microcantilever induced by breath airflow. The signal of breath rate was rebuilt by detecting power variations of the FP interferometer reflected light and applying dynamic thresholds. The breath sensor achieved a high sensitivity of 0.8 nm/(m/s) by detecting the reflection spectrum upon applied flow velocities from 0.53 to 5.31 m/s. This sensor was also shown to have excellent thermal stability as its cross-sensitivity of airflow with respect to the temperature response was only 0.095 (m/s)/°C. When mounted inside a wearable surgical mask, the sensor demonstrated the capability to detect various breath patterns, including normal, fast, random, and deep breaths. We anticipate the proposed wearable breath sensor could be a useful and reliable tool for respiration rate monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.