A strategy of creating stretchable conducting hydrogels for emerging soft electronics is reported. With ice-templated low-temperature polymerization (ITLP), the conducting gel exhibited a hierarchical dendritic microstructure with mitigated nanoaggregation and significantly enhanced electrical conductivity and toughness. Using such gels, strain sensors presented a broad sensing range and high sensitivity for health monitoring. Stretchable solid-state supercapacitors demonstrated remarkable capacitance and flexibility as wearable energy-storage devices. Such a general ITLP method may create diverse soft-electronic materials for energy, healthcare, and robotic applications.
Implantable bioelectronics represent an emerging technology that can be integrated into the human body for diagnostic and therapeutic functions. Power supply devices are an essential component of bioelectronics to ensure their robust performance. However, conventional power sources are usually bulky, rigid, and potentially contain hazardous constituent materials. The fact that biological organisms are soft, curvilinear, and have limited accommodation space poses new challenges for power supply systems to minimize the interface mismatch and still offer sufficient power to meet clinical‐grade applications. Here, recent advances in state‐of‐the‐art nonconventional power options for implantable electronics, specifically, miniaturized, flexible, or biodegradable power systems are reviewed. Material strategies and architectural design of a broad array of power devices are discussed, including energy storage systems (batteries and supercapacitors), power devices which harvest sources from the human body (biofuel cells, devices utilizing biopotentials, piezoelectric harvesters, triboelectric devices, and thermoelectric devices), and energy transfer devices which utilize sources in the surrounding environment (ultrasonic energy harvesters, inductive coupling/radiofrequency energy harvesters, and photovoltaic devices). Finally, future challenges and perspectives are given.
Oriented microstructures are widely found in various biological systems for multiple functions. Such anisotropic structures provide low tortuosity and sufficient surface area, desirable for the design of high‐performance energy storage devices. Despite significant efforts to develop supercapacitors with aligned morphology, challenges remain due to the predefined pore sizes, limited mechanical flexibility, and low mass loading. Herein, a wood‐inspired flexible all‐solid‐state hydrogel supercapacitor is demonstrated by morphologically tuning the aligned hydrogel matrix toward high electrode‐materials loading and high areal capacitance. The highly aligned matrix exhibits broad morphological tunability (47–12 µm), mechanical flexibility (0°–180° bending), and uniform polypyrrole loading up to 7 mm thick matrix. After being assembled into a solid‐state supercapacitor, the areal capacitance reaches 831 mF cm−2 for the 12 µm matrix, which is 259% times of the 47 µm matrix and 403% times of nonaligned matrix. The supercapacitor also exhibits a high energy density of 73.8 µWh cm−2, power density of 4960 µW cm−2, capacitance retention of 86.5% after 1000 cycles, and bending stability of 95% after 5000 cycles. The principle to structurally design the oriented matrices for high electrode material loading opens up the possibility for advanced energy storage applications.
Purpose: Since CD7 may represent a potent target for T-lymphoblastic leukemia/lymphoma (T-ALL/LBL) immunotherapy, this study aimed to investigate safety and efficacy of autologous CD7-chimeric antigen receptor (CAR) T cells in relapsed and refractory (R/R) T-ALL/LBL patients, as well as its manufacturing feasibility. Experimental Design: Preclinical phase was conducted in NPG{trade mark, serif} mice injected with Luc+ GFP+CCRF-CEM cells. Open label phase I clinical trial (NCT04004637) enrolled patients with R/R CD7-positive T-ALL/LBL who received autologous CD7-CAR T cells infusion. Primary endpoint was safety, secondary endpoints included efficacy, pharmacokinetic and pharmacodynamic parameters. Results: CD7 blockade strategy was developed using tandem CD7 nanobody VHH6 coupled with an ER/Golgi-retention motif peptide to intracellularly fasten CD7 molecules. In preclinical phase CD7 blockade CAR T-cells prevented fratricide and exerted potent cytolytic activity, significantly relieving leukemia progression and prolonged the median survival of mice. In clinical phase, the complete remission (CR) rate was 87.5% (7/8) three months after CAR T cells infusion; one leukemia patient achieved minimal residual disease negative CR and one lymphoma patient achieved CR for more than 12 months. Majority of patients (87.5%) only had grade 1 or 2 cytokine release syndrome with no T-cell hypoplasia or any neurological toxicities observed. The median maximum concentration of CAR T cells was 857.2 cells/µL at approximately 12 days and remained detectable up to 270 days. Conclusions: Autologous nanobody-derived fratricide-resistant CD7-CAR T cells demonstrated a promising and durable antitumor response in R/R T-ALL/LBL with tolerable toxicity, warranting further studies in highly aggressive CD7-positive malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.