Solar cells are attractive candidates for clean and renewable power; with miniaturization, they might also serve as integrated power sources for nanoelectronic systems. The use of nanostructures or nanostructured materials represents a general approach to reduce both cost and size and to improve efficiency in photovoltaics. Nanoparticles, nanorods and nanowires have been used to improve charge collection efficiency in polymer-blend and dye-sensitized solar cells, to demonstrate carrier multiplication, and to enable low-temperature processing of photovoltaic devices. Moreover, recent theoretical studies have indicated that coaxial nanowire structures could improve carrier collection and overall efficiency with respect to single-crystal bulk semiconductors of the same materials. However, solar cells based on hybrid nanoarchitectures suffer from relatively low efficiencies and poor stabilities. In addition, previous studies have not yet addressed their use as photovoltaic power elements in nanoelectronics. Here we report the realization of p-type/intrinsic/n-type (p-i-n) coaxial silicon nanowire solar cells. Under one solar equivalent (1-sun) illumination, the p-i-n silicon nanowire elements yield a maximum power output of up to 200 pW per nanowire device and an apparent energy conversion efficiency of up to 3.4 per cent, with stable and improved efficiencies achievable at high-flux illuminations. Furthermore, we show that individual and interconnected silicon nanowire photovoltaic elements can serve as robust power sources to drive functional nanoelectronic sensors and logic gates. These coaxial silicon nanowire photovoltaic elements provide a new nanoscale test bed for studies of photoinduced energy/charge transport and artificial photosynthesis, and might find general usage as elements for powering ultralow-power electronics and diverse nanosystems.
Nanoelectronic devices offer substantial potential for interrogating biological systems, although nearly all work has focused on planar device designs. We have overcome this limitation through synthetic integration of a nanoscale field effect transistor (nanoFET) device at the tip of an acute-angle kinked silicon nanowire, where nanoscale connections are made by the arms of the kinked nanostructure and remote multilayer interconnects allow three-dimensional (3D) probe presentation. The acute-angle probe geometry was designed and synthesized by controlling cis versus trans crystal conformations between adjacent kinks, and the nanoFET was localized through modulation doping. 3D nanoFET probes exhibited conductance and sensitivity in aqueous solution independent of large mechanical deflections, and demonstrated high pH sensitivity. Additionally, 3D nanoprobes modified with phospholipid bilayers can enter single cells to allow robust recording of intracellular potentials.
The development of three-dimensional (3D) synthetic biomaterials as structural and bioactive scaffolds is central to fields ranging from cellular biophysics to regenerative medicine. As of yet, these scaffolds cannot electrically probe the physicochemical and biological micro-environments throughout their 3D and macroporous interior, although this capability could have a marked impact in both electronics and biomaterials. Here, we address this challenge using macroporous, flexible and free-standing nanowire nanoelectronic scaffolds (nanoES), and their hybrids with synthetic or natural biomaterials. 3D macroporous nanoES mimic the structure of natural tissue scaffolds, and they were formed by self-organization of coplanar reticular networks with built-in strain and by manipulation of 2D mesh matrices. NanoES exhibited robust electronic properties and have been used alone or combined with other biomaterials as biocompatible extracellular scaffolds for 3D culture of neurons, cardiomyocytes and smooth muscle cells. Additionally, we show the integrated sensory capability of the nanoES by real-time monitoring of (i) the local electrical activity within 3D nanoES/cardiomyocyte constructs, (ii) the response of 3D nanoES based neural and cardiac tissue models to drugs, and (iii) distinct pH changes inside and outside tubular vascular smooth muscle constructs.
The ability to make electrical measurements inside cells has led to many important advances in electrophysiology1-6. The patch clamp technique, in which a glass micropipette filled with electrolyte is inserted into a cell, offers both high signal-to-noise ratio and temporal resolution1,2. Ideally the micropipette should be as small as possible to increase the spatial resolution and reduce the invasiveness of the measurement, but the overall performance of the technique depends on the impedance of the interface between the micropipette and the cell interior1,2, which limits how small the micropipette can be. Techniques that involve inserting metal or carbon microelectrodes into cells are subject to similar constraints4,7-9. Field-effect transistors (FETs) can also record electric potentials inside cells10, and since their performance does not depend on impedance11,12, they can be made much smaller than micropipettes and microelectrodes. Moreover, FET arrays are better suited for multiplexed measurements. Previously we have demonstrated FET-based intracellular recording with kinked nanowire structures10, but the kink configuration and device design places limits on the probe size and the potential for multiplexing. Here we report a new approach where a SiO2 nanotube is synthetically integrated on top of a nanoscale FET. After penetrating the cell membrane, the SiO2 nanotube brings the cell cytosol into contact with the FET and enables the recording of intracellular transmembrane potential. Simulations show that the bandwidth of this branched intracellular nanotube FET (BIT-FET) is high enough for it to record fast action potentials even when the nanotube diameter is decreased to 3 nm, a length scale which is well below that accessible with other methods1,2,4. Studies of cardiomyocyte cells demonstrate that when brought close, the nanotubes of phospholipid-modified BIT-FETs spontaneously penetrate the cell membrane to yield stable, full-amplitude intracellular action potential recording, showing that a stable tight seal forms between the nanotube and cell membrane. We also show that multiple BIT-FETs can record multiplexed intracellular signals from both single cells and networks of cells.
Large cavities (≈10–12.3 nm) of cubic (Fm‐3m) mesoporous silica without intergrowth are synthesized in the presence of block copolymer templates. The entrance sizes of these cavities can be adjusted in the range of ≈4–9 nm as confirmed by nitrogen sorption studies and an examination of the negative gold replicas. The 3D open mesostructures facilitate the transportation of biomolecules (see picture), as well as the replication of a large‐pore (9 nm) cubic mesoporous carbon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.