(1) Background: The aim of our study was to determine the role of oxidative stress (OS) during early evaluation of acute ST-elevated myocardial infarction (STEMI) and non-ST-elevated myocardial infarction (NSTEMI) patients in order to define the role of redox balance in profiling the development of myocardial infarction (MI). (2) Methods: This prospective observational case-control study included 40 consecutive STEMI and 39 NSTEMI patients hospitalized in the coronary care unit of the cardiology clinic at the Kragujevac Clinical Center, Serbia, between 1 January 2016 and 1 January 2017. Blood samples were collected from all patients for measuring cardio-specific enzymes at admission and 12 h after admission to evaluate systemic oxidative stress biomarkers and the activity of antioxidant enzymes. (3) Results: In this study, participants were predominately female (52%), with a mean age of 56.17 ± 1.22 years old in the STEMI group and 69.17 ± 3.65 in the non-STEMI group. According to the Killip classification, the majority of patients (>50%) were at the second and third level. We confirmed the elevation of superoxide anion radicals in the non-STEMI group 6 h after admission in comparison with the STEMI and CTRL groups, but levels had decreased 12 h after admission. Levels of hydrogen peroxide were statistically significantly increased in the NSTEMI group. A positive correlation of superoxide anion radicals and levels of troponin I at admission was observed (r = 0.955; p = 0.045), as well as an inverse correlation between reduced glutathione and levels of NT-pBNP measured 6 h after admission (r = −0.973; p = 0.027). (4) Conclusions: We confirmed that superoxide anion radicals and reduced glutathione observed together with hs-troponin I at admission and NT-pBNP during hospital treatment could be predictors of ST evolution.
This review aimed to revisit the old and introduce some of the new various cardioprotective effects of physical exercise, focusing on ischemia-reperfusion injury. A wealth of data shows that regular physical exercise is necessary to prevent cardiovascular diseases. In the last few years, a number of new training regimes, usually modified variations of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) protocols, have been rising in popularity among people of all ages. Since exercising is not limited to only healthy people, our study emphasized the benefits of HIIT and MICT in preventing or mitigating cardiac ischemia-reperfusion injury. Different kinds of research are being performed, studying the various positive and side effects of these training regimes, all in hopes of finding the most optimal ones. So far, all of them have shown that exercising to any extent, even for a short period of time, is beneficial in one way or another, and outweighs the possible risks it might have. We also revisited some of the known molecular mechanisms responsible for many of the effects of physical exercise and introduced some new findings related to them. Lastly, we summarized and compared the benefits of different HIIT and MICT protocols to narrow down the search for the most efficient training method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.