In this study percentage of total kernel mass within a given mass of in-shell peanuts was determined nondestructively using a low-cost RF impedance meter. Peanut samples were divided into two groups, one the calibration and the other the validation group. Each group contained 50 samples of about 100 g of peanuts. Capacitance (C), phase angle (ɽ) and impedance (Z) measurements on in-shell peanut samples were made at frequencies 1 MHz, 5 MHz and 9 MHz. Ten measurements on each sample set were made, to minimize the errors due to the orientation of the peanuts as they settle between the electrodes of the impedance meter, by emptying and refilling the samples after each measurement. After completing the measurements on each set, the peanuts from that set were shelled, kernels were separated and weighed. Multi linear regression (MLR) calibration equation was developed by correlating the percentage of the kernel mass in a given peanut sample set with the measured capacitance, impedance and phase angle values. This equation was used to predict the kernel mass ratio of the samples from the validation group. The fitness of the MLR equation was verified using Standard Error of Prediction (SEP) and Root Mean Square Error of Prediction (RMSEP). Also, the predictability of total kernel mass ratio was calculated by comparing the mass ratio predicted using MLR model with the actual mass ratio determined using the conventional standard method of visual determination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.