The key step in accessing the title species (5), the first nonbenzenoid diisocyanobiaryl, involved an unexpected homocoupling of a 6-bromoazulene derivative. The reversible 2e(-) reduction of 5 was addressed electrochemically and computationally. The shifts in energies of the S(0)→S(1) and S(0)→S(2) transitions for a series of related 6,6'-biazulenyl derivatives correlate with the e(-)-donating/-withdrawing strength of their 2,2'-substituents but follow opposite trends. Species 5 adsorbs end-on (η(1)) to the Au(111) surface via one of its -NC groups to form a 2-nm-thick film. In addition, bimetallic coordination of 5's -NC termini can be readily achieved.
Synthesis and self-assembly of structurally related mercapto- and isocyanoazulenes, including novel 2-mercapto-1,3-dicyanoazulene (4) and 2-isocyano-1,3-dicyanoazulene (5), are reported. Exposing 5 adsorbed on Au(111) to a solution of 4 displaces the isocyanoazulene monolayer with that of the mercaptoazulene as judged by ν(C≡N) signatures of these films.
Mercapto (-SH) and isocyano (-N≡C) terminated conducting π-linkers are often employed in the ever-growing quest for organoelectronic materials. While such systems typically involve symmetric dimercapto or diisocyano anchoring of the organic bridge, this article introduces the chemistry of a linear azulenic π-linker equipped with one mercapto and one isocyano terminus. The 2-isocyano-6-mercaptoazulene platform was efficiently accessed from 2-amino-6-bromo-1,3-diethoxycarbonylazulene in four steps. The 2-N≡C end of this 2,6-azulenic motif was anchrored to the [Cr(CO)5] fragment prior to formation of its 6-SH terminus. Metalation of the 6-SH end of [(OC)5Cr(η1-2-isocyano-1,3-diethoxycarbonyl-6-mercaptoazulene)] (7) with Ph3PAuCl, under basic conditions, afforded X-ray structurally characterized heterobimetallic Cr0/AuI ensemble [(OC)5Cr(μ-η1:η1-2-isocyano-1,3-diethoxycarbonyl-6-azulenylthiolate)AuPPh3] (8). Analysis of the 13C NMR chemical shifts for the [(NC)Cr(CO)5] core in a series of the related complexes [(OC)5Cr(2-isocyano-6-X-1,3-diethoxy-carbonylazulene)] (X = -N≡C, Br,H, SH, SCH2CH2CO2CH2CH3, SAuPPh3) unveiled remarkably consistent inverse-linear correlations δ(13COtrans) vs. δ(13CN) and δ(13COcis) vs. δ(13CN) that appear to hold well beyond the above 2-isocyanoazulenic series to include complexes [(OC)5Cr(CNR)] containing strongly electron-withdrawing substituents R, such as CF3, CFClCF2Cl, C2F3, and C6F5. In addition to functioning as asensitive 13C NMR handle, the essentially C4v-symmetric [(-NC)Cr(CO)5] moiety proved to be an informative, remote, νN≡C/νC≡O infrared reporter in probing chemisorption of 7 on the Au(111) surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.