Current treatment recommendations involve preoperative selective arterial embolization, intralesional excision curettage, bone grafting, and fusion of the affected area if instability is present.
Pore interconnectivity within scaffolds is an important parameter influencing cell migration and tissue ingrowth needed to promote tissue regeneration. Methods for assessment of interconnectivity are usually qualitative, restricted to two-dimensional images, or are destructive. Microcomputed tomography nondestructively provides three-dimensional (3D) images of intact specimens at high spatial resolutions. We describe an image analysis technique for quantitative assessment of scaffold interconnectivity. Scaffolds were made via a particulate leaching process with 75%, 80%, 85%, and 88% volumetric porogen fractions. Specimens were scanned and resulting 3D, digital images were analyzed with a custom algorithm. A series of virtual, idealized scaffolds were also created for illustration of the algorithm's analysis approach and for its validation. The program calculated accessible void fractions over a range of minimum connection sizes. In real specimens, nearly 100% of the porous volume was connected with outside air for connections greater than or equal to 20 microm in their smallest dimension. In scaffolds made with 75% porogen, the accessible void fraction decreased to 78% if only those connections greater than or equal to 260 microm were considered. The relationship between accessible void fraction and connection size varied as a function of porogen content. The interconnectivity parameter described here may have implications for cell migration and tissue growth into scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.