Matrix metalloproteinases (MMPs) play a major role in the degradation of the extracellular matrix (ECM) of skeletal muscle, and the inducible gelatinase MMP-9 in particular appears to be critical for the remodeling of muscle ECM during growth and repair. Here we determined the effects of MMP-9 gene inactivation on fiber type and size in the tibialis anterior (TA), gastrocnemius (GAST), and soleus (SOL) muscles in female mice. In the TA, the cross-sectional area (CSA) of the myosin heavy chain (MyHC) IIb-expressing fibers was significantly smaller in MMP-9 null mice while in the GAST, CSA of all three fast fiber types was decreased. In the SOL, MyHC type I-expressing fibers were significantly smaller in the MMP-9 null mice. The percentage of MyHC type IIb-expressing fibers was significantly increased in the TA and GAST of MMP-9 null mice, while the percentage of MyHC IId-expressing fibers significantly decreased in the GAST of MMP-9 null mice. Fiber percentages in the SOL were not significantly different between the two lines. Despite these changes in fiber size and type, in vivo hindlimb force production was not changed in MMP-9 null mice. Meanwhile, neither expression of the constitutive gelatinase MMP-2 nor immunohistochemical staining for type IV collagen was significantly altered by MMP-9 inactivation in any muscles examined. The present study demonstrates that MMP-9 inactivation results in changes in fiber size and type in adult mouse hindlimb muscles that may depend on indirect mechanisms involving reduced bone growth or nerve changes in response to MMP-9 inactivation.
Members of the bone morphogenetic protein-1/mammalian tolloid (BMP-1/mTLD) family of proteases cleave diverse extracellular proteins, including the growth inhibitor myostatin. The purpose of this work was to examine the expression of BMP-1/mTLD, tolloid-like-1 and -2 (TLL1 and TLL2) in hindlimb muscles of the mouse in vivo and in C(2)C(12) muscle cells in vitro. Quantitative real-time polymerase chain reaction revealed that neither BMP-1/mTLD nor TLL1 mRNA levels differed between the predominantly fast-twitch tibialis anterior (TA) and gastrocnemius (GAST) muscles and the more slow-twitch soleus (SOL) muscle; TLL2 mRNA levels were not detectable in any of the muscles examined. Interestingly, however, immunohistochemical analysis revealed that BMP-1 protein was expressed in type I and IIa but not in IIb fibers. TLL1 mRNA levels significantly increased in the TA but not the SOL with 3 days of hindlimb suspension and significantly decreased in both TA and SOL in response to 2 days of food deprivation. In contrast, BMP-1/mTLD mRNA levels were unaffected in either muscle by either condition. In addition, BMP-1/mTLD and TLL1 mRNA levels significantly decreased during C(2)C(12) myoblast differentiation in vitro, and activity of a 1,200-bp mouse TLL1 promoter construct was significantly decreased in C(2)C(12) myotubes by differentiation, by mutation of an nuclear factor kappa-beta (NF-kappaB) site, or deletion of a sma/mothers against decapentaplegic (SMAD) site. Together, these data demonstrate that TLL1 mRNA levels are altered by loading, energy status, and differentiation, and thus its expression may be regulated so as to modulate activity of myostatin or other extracellular substrates during these adaptive states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.