It is well established that autism spectrum disorders (ASD) have a strong genetic component. However, for at least 70% of cases, the underlying genetic cause is unknown1. Under the hypothesis that de novo mutations underlie a substantial fraction of the risk for developing ASD in families with no previous history of ASD or related phenotypes—so-called sporadic or simplex families2,3, we sequenced all coding regions of the genome, i.e. the exome, for parent-child trios exhibiting sporadic ASD, including 189 new trios and 20 previously reported4. Additionally, we also sequenced the exomes of 50 unaffected siblings corresponding to these new (n = 31) and previously reported trios (n = 19)4, for a total of 677 individual exomes from 209 families. Here we show de novo point mutations are overwhelmingly paternal in origin (4:1 bias) and positively correlated with paternal age, consistent with the modest increased risk for children of older fathers to develop ASD5. Moreover, 39% (49/126) of the most severe or disruptive de novo mutations map to a highly interconnected beta-catenin/chromatin remodeling protein network ranked significantly for autism candidate genes. In proband exomes, recurrent protein-altering mutations were observed in two genes, CHD8 and NTNG1. Mutation screening of six candidate genes in 1,703 ASD probands identified additional de novo, protein-altering mutations in GRIN2B, LAMC3, and SCN1A. Combined with copy number variant (CNV) data, these results suggest extreme locus heterogeneity but also provide a target for future discovery, diagnostics, and therapeutics.
To understand the genetic heterogeneity underlying developmental delay, we compare copy-number variants (CNVs) in 15,767 children with intellectual disability and various congenital defects to 8,329 adult controls. We estimate that ~14.2% of disease in these individuals is due to large CNVs > 400 kbp. We find greater CNV enrichment in patients with craniofacial anomalies and cardiovascular defects than epilepsy or autism. We identify 59 pathogenic CNVs including 14 novel or previously weakly supported candidates. We refine the critical interval for several genomic disorders such as the 17q21.31 microdeletion syndrome and identify 940 candidate dosage-sensitive genes. We also develop methods to opportunistically discover small, disruptive CNVs within the large and growing diagnostic array datasets. This evolving CNV morbidity map combined with exome/genome sequencing will be critical for deciphering the genetic basis of developmental delay, intellectual disability, and autism spectrum disorders.
Comparisons of human genomes show that more base pairs are altered as a result of structural variation — including copy number variation — than as a result of point mutations. Here we review advances and challenges in the discovery and genotyping of structural variation. The recent application of massively parallel sequencing methods has complemented microarray-based methods and has led to an exponential increase in the discovery of smaller structural-variation events. Some global discovery biases remain, but the integration of experimental and computational approaches is proving fruitful for accurate characterization of the copy, content and structure of variable regions. We argue that the long-term goal should be routine, cost-effective and high quality de novo assembly of human genomes to comprehensively assess all classes of structural variation.
Autism Genes, Again and Again Despite recent advances in sequencing technologies and their lowered costs—effective, highly sensitive, and specific sequencing of multiple genes of interest from large cohorts remains expensive. O'Roak et al. (p. 1619 ; published online 15 November) modified molecular inversion probe methods for target-specific capture and sequencing to resequence candidate genes in thousands of patients. The technique was applied to 44 candidate genes to identify de novo mutations in a large cohort of individuals with and without autism spectrum disorder. The analysis revealed several de novo mutations in genes that together contribute to 1% of sporadic autism spectrum disorders, supporting the notion that multiple genes underlie autism-spectrum disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.