We have analyzed the correlation that exists between the GC levels of third and first or second codon position for about 1400 human coding sequences. The linear relationship that was found indicates that the large differences in GC level of third codon positions of human genes are paralleled by smaller differences in GC levels of first and second codon positions. Whereas third codon position differences correspond to very large differences in codon usage within the human genome, the first and second codon position differences correspond to smaller, yet very remarkable, differences in the amino acid composition of encoded proteins. Because GC levels of codon positions are linearly correlated with the GC levels of the isochores harboring the corresponding genes, both codon usage and amino acid composition are different for proteins encoded by genes located in isochores of different GC levels. Furthermore, we have also shown that a linear relationship with a unit slope and a correlation coefficient of 0.77 exists between GC levels of introns and exons from the 238 human genes currently available for this analysis. Introns are, however, about 5% lower in GC, on average, than exons from the same genes.
GC‐poor and GC‐rich isochores, the long (greater than 300 kb) compositionally homogeneous DNA segments that form the genome of warm‐blooded vertebrates, are located in G‐ and R‐bands respectively of metaphase chromosomes. The precise correspondence between GC‐rich isochores and R‐band structure is still, however, an open problem, because GC‐rich isochores are compositionally heterogeneous and only represent one‐third of the genome, with the GC‐richest family (which is by far the highest in gene concentration) corresponding to less than 5% of the genome. In order to clarify this issue and, more generally, to correlate DNA composition and chromosomal structure in an unequivocal way, we have developed a new approach, compositional mapping. This consists of assessing the base composition over 0.2‐0.3 Mb (megabase) regions surrounding landmarks that were previously localized on the physical map. Compositional mapping was applied here to the long arm of human chromosome 21, using 53 probes that had already been used in physical mapping. The results obtained provide a direct demonstration that the DNA stretches of G‐bands essentially correspond to GC‐poor isochores, and that R‐band DNA is characterized by a compositional heterogeneity that is much more striking than expected, in that it comprises isochores covering the full spectrum of GC levels. GC‐poor isochores of R‐bands may, however, correspond to ‘thin’ G‐bands, as visualized at high resolution, leaving GC‐rich and very GC‐rich isochores as the real components of (high‐resolution) R‐band DNA.(ABSTRACT TRUNCATED AT 250 WORDS)
Objective In a recent genome-wide association study of HIV-1-infected individuals in the Euro-CHAVI cohort, viral load set-point was strongly associated with genotypes defined by two SNPs (rs9264942 and rs2395029) within the human MHC region on chromosome 6. We attempted to confirm this finding in African-Americans and assess if these SNPs are in linkage disequilibrium (LD) with HLA class I alleles that mediate innate and adaptive immunity. Design Our analyses relied on 121 African American adolescents with chronic HIV-1 infection and quarterly immunological and virological outcome measures in the absence of therapy. Methods PCR-based techniques were used to genotype two SNPs along with HLA class I alleles. Their associations with HIV-1 viral load set-point and longitudinal CD4+ and CD8+CD38+ T-cell counts were tested in univariate and multivariate models. Results The CC genotype at rs9264942 was associated with reduced viral load but not with immunological outcomes or category of disease control. Consistent associations of HLA-B*57 (mostly B*5703) with favorable virological and immunological outcomes were observed, but not rs2395029G allele at the HCP5 locus, which is in absolute linkage disequilibrium with B*5701 (in individuals of European descent), and not B*5703. Conclusion While rs9264942 and B*57 (but not rs2395029G) are clearly associated with control of viral load set-point among African-Americans, fine-mapping of MHC SNPs in populations of African and European descent should help reveal the true variants and the underlying functional mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.