To examine longitudinal and gestational effects of mineral content in human milk, we analyzed human milk from lactating mothers of premature (PRT, n = 24, < 2000 g birth weight, < 37 wk gestation) and full-term (FT, n = 19, > 2500 g, 39-41 wk gestation), living in Newfoundland, Canada. Samples were collected once a week for 8 wk with one final sample collected at 3 mo. Milk samples collected in acid-washed containers were wet ashed with concentrated HNO3, and barium, cadmium, calcium, cesium, cobalt, copper, cerium, lanthanum, magnesium, manganese, molybdenum, nickel, lead, rubidium, tin, strontium, and zinc were measured using inductively coupled plasma-mass spectrometry. Data were analyzed using standard multiple-regression procedures with correlated data analyses to take account of the relationship between successive weeks. Results indicated lower Ca and Pb in PRT milk. Calcium was the only nutritionally significant element to differ between groups. Molybdenum in both PRT and FT milk showed a definite decrease with time, suggesting that the Mo content in milk is homeostatically regulated. However, Ce, La, Ba, and Sn did not display any pattern indicative of biological regulation and potential human requirement.