As demonstrated in various animal models, organismal longevity can be achieved via interventions that at the mechanistic level could be considered to entail 'defensive' responses: most long-lived mutants focus on somatic maintenance, while reducing growth pathway signalling and protein translation and turnover. We here provide evidence that the opposite mechanism can also lead to longevity and improved health.We report on the mode of action of royalactin, a glycoprotein activator of epidermal growth factor signalling, capable of extending lifespan in several animals. We show that in Caenorhabditis elegans, royalactin-induced longevity depends on increased protein translation and entails increased proteasome activity. We propose the term 'copious longevity' to describe this newly-elucidated mechanism. In contrast to what is true for many other lifespan-extending interventions, we observed no obvious trade-offs between royalactininduced longevity and several life history traits. Our data point towards increased protein turnover to support healthy ageing, and provide a means for future comparative studies of defensive vs. copious mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.