The dynamic factor Markov-switching (DFMS) model introduced by Diebold and Rudebusch (1996) has proven to be a powerful framework to measure the business cycle. We extend the DFMS model by allowing for time-varying transition probabilities, with the aim of accelerating the real-time dating of turning points between expansion and recession regimes. Time-variation of the transition probabilities is brought about endogenously using the accelerated score-driven approach and exogenously using the term spread. In a real-time application using the four components of The Conference Board's Coincident Economic Index for the period 1959-2020, we find that signaling power for recessions is significantly improved and are able to date the 2001 and 2008 recession peaks four and ten months before the NBER.
The Dynamic Conditional Correlation (DCC) model by Engle (2002) has become an extremely popular tool for modeling the time-varying dependence of asset returns. However, applications to large cross-sections have been found to be problematic, due to the curse of dimensionality. We propose a novel DCC model with Conditional LInear Pooling (CLIP-DCC) which endogenously determines an optimal degree of commonality in the correlation innovations, allowing a part of the update to be of reduced dimension. In contrast to existing approaches such as the Dynamic EquiCOrrelation (DECO) model, the CLIP-DCC model does not restrict long-run behavior, thereby naturally complementing target correlation matrix shrinkage approaches. Empirical findings suggest substantial benefits for a minimum-variance investor in real-time. Combining the CLIP-DCC model with target shrinkage yields the largest improvements, confirming that they address distinct parts of uncertainty of the conditional correlation matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.