The wear and friction behavior of ultralow wear polytetrafluoroethylene (PTFE)/α-alumina composites first described by Burris and Sawyer in 2006 has been heavily studied, but the mechanisms responsible for the 4 orders of magnitude improvement in wear over unfilled PTFE are still not fully understood. It has been shown that the formation of a polymeric transfer film is crucial to achieving ultralow wear on a metal countersurface. However, the detailed chemical mechanism of transfer film formation and its role in the exceptional wear performance has yet to be described. There has been much debate about the role of chemical interactions between the PTFE, the filler, and the metal countersurface, and some researchers have even concluded that chemical changes are not an important part of the ultralow wear mechanism in these materials. Here, a "stripe" test allowed detailed spectroscopic studies of PTFE/α-alumina transfer films in various stages of development, which led to a proposed mechanism which accounts for the creation of chemically distinct films formed on both surfaces of the wear couple. PTFE chains are broken during sliding and undergo a series of reactions to produce carboxylate chain ends, which have been shown to chelate to both the metal surface and to the surface of the alumina filler particles. These tribochemical reactions form a robust polymer-on-polymer system that protects the steel countersurface and is able to withstand hundreds of thousands of cycles of sliding with almost no wear of the polymer composite after the initial run-in period. The mechanical scission of carbon−carbon bonds in the backbone of PTFE under conditions of sliding contact is supported mathematically using the Hamaker model for van der Waals interactions between polymer fibrils and the countersurface. The necessity for ambient moisture and oxygen is explained, and model experiments using small molecules confirm the reactions in the proposed mechanism.
Mammalian grinding dentitions are composed of four major tissues that wear differentially, creating coarse surfaces for pulverizing tough plants and liberating nutrients. Although such dentition evolved repeatedly in mammals (such as horses, bison, and elephants), a similar innovation occurred much earlier (~85 million years ago) within the duck-billed dinosaur group Hadrosauridae, fueling their 35-million-year occupation of Laurasian megaherbivorous niches. How this complexity was achieved is unknown, as reptilian teeth are generally two-tissue structures presumably lacking biomechanical attributes for grinding. Here we show that hadrosaurids broke from the primitive reptilian archetype and evolved a six-tissue dental composition that is among the most sophisticated known. Three-dimensional wear models incorporating fossilized wear properties reveal how these tissues interacted for grinding and ecological specialization.
An instrument has been developed that allows in situ optical analysis and tribological measurements for contacts between solid bodies; an interferometric optical analysis can be used to measure and observe contact size, contact geometry, near contact topography, tribofilm formation, tribofilm motion, tribofilm thickness, wear debris formation, and wear debris morphology. The optical arrangement is in such a way that a 0th order interference fringe highlights the real contact area of contact, while near contact regions are height-mapped with higher order Newton's rings interference fringes. Images synchronized with force and position measurements allow for the potential to test and validate models for contact mechanics, adhesion, and sliding. The contact and friction measurement between a rough rubber sphere and a polished glass counterface were studied over a range of loads from 1 to 50 mN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.