The wear and friction behavior of ultralow wear polytetrafluoroethylene (PTFE)/α-alumina composites first described by Burris and Sawyer in 2006 has been heavily studied, but the mechanisms responsible for the 4 orders of magnitude improvement in wear over unfilled PTFE are still not fully understood. It has been shown that the formation of a polymeric transfer film is crucial to achieving ultralow wear on a metal countersurface. However, the detailed chemical mechanism of transfer film formation and its role in the exceptional wear performance has yet to be described. There has been much debate about the role of chemical interactions between the PTFE, the filler, and the metal countersurface, and some researchers have even concluded that chemical changes are not an important part of the ultralow wear mechanism in these materials. Here, a "stripe" test allowed detailed spectroscopic studies of PTFE/α-alumina transfer films in various stages of development, which led to a proposed mechanism which accounts for the creation of chemically distinct films formed on both surfaces of the wear couple. PTFE chains are broken during sliding and undergo a series of reactions to produce carboxylate chain ends, which have been shown to chelate to both the metal surface and to the surface of the alumina filler particles. These tribochemical reactions form a robust polymer-on-polymer system that protects the steel countersurface and is able to withstand hundreds of thousands of cycles of sliding with almost no wear of the polymer composite after the initial run-in period. The mechanical scission of carbon−carbon bonds in the backbone of PTFE under conditions of sliding contact is supported mathematically using the Hamaker model for van der Waals interactions between polymer fibrils and the countersurface. The necessity for ambient moisture and oxygen is explained, and model experiments using small molecules confirm the reactions in the proposed mechanism.
This paper summarizes the submissions to a recently announced contact-mechanics modeling challenge. The task was to solve a typical, albeit mathematically fully defined problem on the adhesion between nominally flat surfaces. The surface topography of the rough, rigid substrate, the elastic properties of the indenter, as well as the short-range adhesion between indenter and substrate, were specified so that diverse quantities of interest, e.g., the distribution of interfacial stresses at a given load or the mean gap as a function of load, could be computed and compared to a reference solution. Many different solution strategies were pursued, ranging from traditional asperity-based models via Persson theory and brute-force computational approaches, to real-laboratory experiments and all-atom molecular dynamics simulations of a model, in which the original assignment was scaled down to the atomistic scale. While each submission contained satisfying answers for at least a subset of the posed questions, efficiency, versatility, and accuracy differed between methods, the more precise methods being, in general, computationally more complex. The aim of this paper is to provide both theorists and experimentalists with benchmarks to decide which method is the most appropriate for a particular application and to gauge the errors associated with each one
These results demonstrate that skin cells and explants proliferate and migrate at pHs higher than the physiological pH and that at lower pH keratinocytes express a differentiated keratinocyte phenotype. A better understanding of the responses of the cellular components of skin to fundamental physiological variables such as pH may help inform improved clinical wound care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.