Explainable face recognition (XFR) is the problem of explaining the matches returned by a facial matcher, in order to provide insight into why a probe was matched with one identity over another. In this paper, we provide the first comprehensive benchmark and baseline evaluation for XFR. We define a new evaluation protocol called the "inpainting game", which is a curated set of 3648 triplets (probe, mate, nonmate) of 95 subjects, which differ by synthetically inpainting a chosen facial characteristic like the nose, eyebrows or mouth creating an inpainted nonmate. An XFR algorithm is tasked with generating a network attention map which best explains which regions in a probe image match with a mated image, and not with an inpainted nonmate for each triplet. This provides ground truth for quantifying what image regions contribute to face matching. Finally, we provide a comprehensive benchmark on this dataset comparing five state-of-the-art XFR algorithms on three facial matchers. This benchmark includes two new algorithms called subtree EBP and Density-based Input Sampling for Explanation (DISE) which outperform the state-of-the-art XFR by a wide margin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.