In the coming years, operations in low altitude airspace will vastly increase as the capabilities and applications of small unmanned aerial systems (sUAS) continue to multiply. Therefore, finding solutions to managing sUAS in highly congested airspace will facilitate sUAS operations. In this study, a fuzzy logic-based approach was used to help mitigate the risk of collisions between aircraft using separation assurance and collision avoidance techniques. The system was evaluated for its effectiveness at mitigating the risk of mid-air collisions between aircraft. This system utilizes only current state information and can resolve potential conflicts without knowledge of intruder intent. The avoidance logic was verified using formal methods and shown to select the correct action in all instances. Additionally, the fuzzy logic controllers were shown to always turn the vehicles in the correct direction. Numerical testing demonstrated that the avoidance system was able to prevent a mid-air collision between two sUAS in all tested cases. Simulations were also performed in a three-dimensional environment with a heterogeneous fleet of sUAS performing a variety of realistic missions. Simulations showed that the system was 99.98% effective at preventing mid-air collisions when separation assurance was disabled (unmitigated case) and 100% effective when enabled (mitigated case).
The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate is planning a series of human and robotic missions to the Earth's moon and to Mars. These missions will require telecommunication and navigation services. This paper 1 sets forth presumed requirements for such services and presents strawman lunar and Mars telecommunications network architectures to satisfy the presumed requirements. The paper 2 suggests that a modest ground network would suffice for missions to the near-side of the moon. A constellation of three Lunar Telecommunications Orbiters connected to a modest ground network could provide continuous redundant links to a polar lunar base and its vicinity. For human and robotic missions to Mars, a pair of areostationary satellites could provide continuous redundant links between a midlatitude Mars base and Deep Space Network antennas augmented by large arrays of 12-m antennas.
As the applications for using small Unmanned Aircraft Systems (sUAS) beyond visual line of sight (BVLOS) continue to grow in the coming years, it is imperative that intelligent sensor fusion techniques be explored. In BVLOS scenarios the vehicle position must accurately be tracked over time to ensure no two vehicles collide with one another, no vehicle crashes into surrounding structures, and to identify off-nominal scenarios. In this study, an intelligent systems approach is used to estimate the position of sUAS given a variety of sensor platforms, including GPS, radar, and onboard detection hardware. Common research challenges include multiple sensor platforms and sensor reliability. In an effort to resolve these challenges, techniques such as a Maximum a Posteriori estimation and Fuzzy Logic based sensor confidence determination are used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.