Aliphatic polyester biodegradable microspheres have been extensively studied for controlled and minimally invasive in situ protein delivery. However, they are commonly characterized by protein denaturation via acidic polyester degradation products, whereas their supraphysiologic modulus contributes to the inflammatory response upon implantation. To address these limitations, low-melting-point poly(ε-caprolactone-co-glycolide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-glycolide) (PEG-(PCG) 2 ) copolymers were prepared and characterized for their ability to release bioactive stromalderived factor-1α (SDF-1α) as a representative therapeutic protein. The PEG molecular weight was chosen such that it would be crystalline at room temperature to promote easy handling of the microspheres, whereas the molecular weight and composition of the hydrophobic PCG blocks were adjusted to ensure the polymer was a viscous amorphous liquid at 37 °C. Microspheres prepared from the triblock copolymers completely degraded within 8 weeks in vitro with a minor decrease in microenvironmental pH. A prolonged release of SDF-1α was observed with its bioactivity highly retained after encapsulation and release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.