We construct a new gravitational action which includes cubic curvature interactions and which provides a useful toy model for the holographic study of a three parameter family of four-and higher-dimensional CFT's. We also investigate the black hole solutions of this new gravity theory. Further we examine the equations of motion of quasi-topological gravity. While the full equations in a general background are fourth-order in derivatives, we show that the linearized equations describing gravitons propagating in the AdS vacua match precisely the second-order equations of Einstein gravity.
Thermodynamic quantities associated with black holes in Anti-de Sitter space obey an interesting identity when the cosmological constant is included as one of the dynamical variables, the generalized Smarr relation. We show that this relation can easily be understood from the point of view of the dual holographic field theory. It amounts to the simple statement that the extensive thermodynamic quantities of a large N gauge theory only depend on the number of colors, N , via an overall factor of N 2 .
We study whether the relations between the Weyl anomaly, entanglement entropy (EE), and thermal entropy of a two-dimensional (2D) conformal field theory (CFT) extend to 2D boundaries of 3D CFTs, or 2D defects of D ≥ 3 CFTs. The Weyl anomaly of a 2D boundary or defect defines two or three central charges, respectively. One of these, b, obeys a c-theorem, as in 2D CFT. For a 2D defect, we show that another, d2, interpreted as the defect's "conformal dimension," must be non-negative if the Averaged Null Energy Condition (ANEC) holds in the presence of the defect. We show that the EE of a sphere centered on a planar defect has a logarithmic contribution from the defect fixed by b and d2. Using this and known holographic results, we compute b and d2 for 1/2-BPS surface operators in the maximally supersymmetric (SUSY) 4D and 6D CFTs. The results are consistent with b's c-theorem. Via free field and holographic examples we show that no universal "Cardy formula" relates the central charges to thermal entropy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.