Understanding the impact of side chains on the aqueous redox properties of conjugated polymers is crucial to unlocking their potential in bioelectrochemical devices, such as organic electrochemical transistors (OECTs).Here, we report a series of polar propylenedioxythiophene-based copolymers functionalized with glyme side chains of varying lengths as well as an analogue with short hydroxyl side chains. We show that long polar side chains are not required for achieving high volumetric capacitance (C*), as short hydroxy substituents can afford facile doping and high C* in saline-based electrolytes. Furthermore, we demonstrate that varying the length of the polar glyme chains leads to subtle changes in material properties. Increasing the length of glyme side chain is generally associated with an enhancement in OECT performance, doping kinetics, and stability, with the polymer bearing the longest side chains exhibiting the highest performance ([μC*] OECT = 200 ± 8 F cm −1 V −1 s −1 ). The origin of this performance enhancement is investigated in different device configurations using in situ techniques (e.g., time-resolved spectroelectrochemistry and chronoamperometry). These studies suggest that the performance improvement is not due to significant changes in C* but rather due to variations in the inferred mobility. Through a thorough comparison of two different architectures, we demonstrate that device geometry can obfuscate the benchmarking of OECT active channel materials, likely due to contact resistance effects. By complementing all electrochemical and spectroscopic experiments with in situ measurements performed within a planar OECT device configuration, this work seeks to unambiguously assign material design principles to fine-tune the properties of poly(dioxythiophene)s relevant for application in OECTs.
conjugated polymers (CPs) with tunable electronic properties will remain a challenge without adequate solution processability due to the importance of techniques such as roll-to-roll manufacturing. Consequently, modifying CP backbones with polar side chains has recently resurged as an attractive structural design approach to improve polymer solubility and to provide CPs with the capability of transporting both electrons and ions, which is crucial for applications such as organic electrochemical transistors (OECTs). Here, a new dioxythiophene copolymer comprised of 2, 2'-bis-(3,4-ethylenedioxy)thiophene (biEDOT) and 3,4-propylenedioxythiophene (ProDOT) substituted with branched oligo(ether) side chains (PE 2 -biOE2OE3) is synthesized using two direct hereto(arylation) polymerization (DHAP) techniques. The typical DHAP technique results in a lower molecular weight polymer (PE 2 -biOE2OE3(L)), which is soluble in acetone and demonstrated a solid-state conductivity after oxidative doping of 55 ± 3 S cm −1 . Alternatively, a unique temperature ramp DHAP methodology results in a higher molecular weight polymer (PE 2 -biOE2OE3(H)) with an especially high solidstate conductivity of 430 ± 60 S cm −1 . Notably, the first OECT fabricated from an acetone-processed polymer is reported, which is stable up to 500 cycles and can provide a pathway for future material design aimed at eliminating the use of toxic chlorinated solvents in OECT active layer processing.
Electrochemically grown polyaniline (PAni) thin films have been shown to react efficiently with thiols, which can dramatically change the surface properties of the material without significantly impacting bulk conductivity. Such films, however, are difficult to process and are unsuitable for many applications. Here, we demonstrate the grafting of thiol-terminated poly(ethylene oxide) (PEG-SH) of various molecular weights onto PAni nanorods. The resulting materials are characterized by spectroscopic, microscopic, and thermal analytical methods to demonstrate the covalent attachment of the PEG polymers to the nanorods. The derivatized nanorods are water dispersible and maintain their original morphology and electroactivity. The number of thiols bound to the nanoparticles under a given set of conditions decreases as the size increases, but the total mass of PEG increases with increasing size. The reaction proceeds at room temperature, but is much faster at higher temperature and greater PEG density is observed.
Printable feedstocks that can produce lightweight, robust, and ductile structures with tunable and switchable conductivity are of considerable interest for numerous application spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.