Transient changes in wettability complicate the prediction of biochar's hydrologic effects. Biochar wetting properties were characterized from poultry litter biochar (PLBC) produced from slow pyrolysis at temperatures between 300 and 600°C with water drop penetration time (persistence of hydrophobicity) and contact angle (CA; severity of hydrophobicity) measurements. Hydrophobicity was associated with semivolatile organic compounds coating PLBC surfaces, which resulted in 24.4 carbon layers and CAs of 101.1 ± 2.9° at a pyrolysis temperature of 300°C but only 0.4 layers of surface coverage and CAs of 20.6 ± 1.3° when pyrolyzed at 600°C. Mixing PLBC with water removed organic coatings, and storage in water for 72 h decreased CA as much as 81° for the most hydrophobic PLBCs. When mixed with quartz sand of the same particle size, CAs of PLBC-sand mixtures increased from 6.6 ± 1.4° at 0% PLBC mass fraction to 48.3 ± 2.0° at 15% mass fraction. Hydrophobic and hydrophilic PLBCs increased CA by nearly identical amounts at 2 and 5% mass fractions, which was explained by the influence of PLBC particle topology on macroscopic surface roughness of PLBC-sand mixtures. For environmentally relevant situations, PLBC-sand mixtures at mass fractions ≤15% remained water wetting. However, all PLBC additions increased CA, which may alter infiltration rates and induce preferential water flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.