Background: Classical in vitro wound-healing assays and other techniques designed to study cell migration and invasion have been used for many years to elucidate the various mechanisms associated with metastasis. However, many of these methods are limited in their ability to achieve reproducible, quantitative results that translate well in vivo. Such techniques are also commonly unable to elucidate single-cell motility mechanisms, an important factor to be considered when studying dissemination. Therefore, we developed and applied a novel in vitro circular invasion assay (CIA) in order to bridge the translational gap between in vitro and in vivo findings, and to distinguish between different modes of invasion.
Tumor-microenvironment interactions are increasingly recognized to influence tumor progression. To understand the competitive dynamics of tumor cells in diverse microenvironments, we experimentally parameterized a hybrid discretecontinuum mathematical model with phenotypic trait data from a set of related mammary cell lines with normal, transformed, or tumorigenic properties. Surprisingly, in a resource-rich microenvironment, with few limitations on proliferation or migration, transformed (but not tumorigenic) cells were most successful and outcompeted other cell types in heterogeneous tumor simulations. Conversely, constrained microenvironments with limitations on space and/or growth factors gave a selective advantage to phenotypes derived from tumorigenic cell lines. Analysis of the relative performance of each phenotype in constrained versus unconstrained microenvironments revealed that, although all cell types grew more slowly in resource-constrained microenvironments, the most aggressive cells were least affected by microenvironmental constraints. A game theory model testing the relationship between microenvironment resource availability and competitive cellular dynamics supports the concept that microenvironmental independence is an advantageous cellular trait in resource-limited microenvironments. [Cancer Res 2009;69(22):8797-806]
Mapping quantitative cell traits (QCT) to underlying molecular defects is a central challenge in cancer research because heterogeneity at all biological scales, from genes to cells to populations, is recognized as the main driver of cancer progression and treatment resistance. A major roadblock to a multiscale framework linking cell to signaling to genetic cancer heterogeneity is the dearth of large-scale, single-cell data on QCT-such as proliferation, death sensitivity, motility, metabolism, and other hallmarks of cancer. High-volume single-cell data can be used to represent cell-to-cell genetic and nongenetic QCT variability in cancer cell populations as averages, distributions, and statistical subpopulations. By matching the abundance of available data on cancer genetic and molecular variability, QCT data should enable quantitative mapping of phenotype to genotype in cancer. This challenge is being met by high-content automated microscopy (HCAM), based on the convergence of several technologies including computerized microscopy, image processing, computation, and heterogeneity science. In this chapter, we describe an HCAM workflow that can be set up in a medium size interdisciplinary laboratory, and its application to produce highthroughput QCT data for cancer cell motility and proliferation. This type of data is ideally suited to populate cell-scale computational and mathematical models of cancer progression for quantitatively and predictively evaluating cancer drug discovery and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.