Purpose: We have previously identified solute-linked carrier family A1 member 5 (SLC1A5) as an overexpressed protein in a shotgun proteomic analysis of stage I non-small cell lung cancer (NSCLC) when compared with matched controls. We hypothesized that overexpression of SLC1A5 occurs to meet the metabolic demand for lung cancer cell growth and survival.Experimental Design: To test our hypothesis, we first analyzed the protein expression of SLC1A5 in archival lung cancer tissues by immunohistochemistry and immunoblotting (N ¼ 98) and in cell lines (N ¼ 36). To examine SLC1A5 involvement in amino acid transportation, we conducted kinetic analysis of L-glutamine (Gln) uptake in lung cancer cell lines in the presence and absence of a pharmacologic inhibitor of SLC1A5, gamma-L-Glutamyl-p-Nitroanilide (GPNA). Finally, we examined the effect of Gln deprivation and uptake inhibition on cell growth, cell-cycle progression, and growth signaling pathways of five lung cancer cell lines.Results: Our results show that (i) SLC1A5 protein is expressed in 95% of squamous cell carcinomas (SCC), 74% of adenocarcinomas (ADC), and 50% of neuroendocrine tumors; (ii) SLC1A5 is located at the cytoplasmic membrane and is significantly associated with SCC histology and male gender; (iii) 68% of Gln is transported in a Na þ -dependent manner, 50% of which is attributed to SLC1A5 activity; and (iv) pharmacologic and genetic targeting of SLC1A5 decreased cell growth and viability in lung cancer cells, an effect mediated in part by mTOR signaling.Conclusions: These results suggest that SLC1A5 plays a key role in Gln transport controlling lung cancer cells' metabolism, growth, and survival.
Using biomarkers to select the most at-risk population, to detect the disease while measurable and yet not clinically apparent has been the goal of many investigations. Recent advances in molecular strategies and analytic platforms, including genomics, epigenomics, proteomics, and metabolomics, have identified increasing numbers of potential biomarkers in the blood, urine, exhaled breath condensate, bronchial specimens, saliva, and sputum, but none have yet moved to the clinical setting. Therefore, there is a recognized gap between the promise and the product delivery in the cancer biomarker field. In this review, we define clinical contexts where risk and diagnostic biomarkers may have use in the management of lung cancer, identify the most relevant candidate biomarkers of early detection, provide their state of development, and finally discuss critical aspects of study design in molecular biomarkers for early detection of lung cancer.
Aberrant expression of RNA-binding proteins has profound implications for cellular physiology and the pathogenesis of human diseases such as cancer. We previously identified the Fragile X-Related 1 gene (FXR1) as one amplified candidate driver gene at 3q26-29 in lung squamous cell carcinoma (SCC). FXR1 is an autosomal paralog of Fragile X mental retardation 1 and has not been directly linked to human cancers. Here we demonstrate that FXR1 is a key regulator of tumor progression and its overexpression is critical for nonsmall cell lung cancer (NSCLC) cell growth in vitro and in vivo. We identified the mechanisms by which FXR1 executes its regulatory function by forming a novel complex with two other oncogenes, protein kinase C, iota and epithelial cell transforming 2, located in the same amplicon via distinct binding mechanisms. FXR1 expression is a candidate biomarker predictive of poor survival in multiple solid tumors including NSCLCs. Because FXR1 is overexpressed and associated with poor clinical outcomes in multiple cancers, these results have implications for other solid malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.