Intestinal dysbiosis contributes to obesity and insulin resistance, but intervening with antibiotics, prebiotics, or probiotics can be limited by specificity or sustained changes in microbial composition. Postbiotics include bacterial components such as lipopolysaccharides, which have been shown to promote insulin resistance during metabolic endotoxemia. We found that bacterial cell wall-derived muramyl dipeptide (MDP) is an insulin-sensitizing postbiotic that requires NOD2. Injecting MDP lowered adipose inflammation and reduced glucose intolerance in obese mice without causing weight loss or altering the composition of the microbiome. MDP reduced hepatic insulin resistance during obesity and low-level endotoxemia. NOD1-activating muropeptides worsened glucose tolerance. IRF4 distinguished opposing glycemic responses to different types of peptidoglycan and was required for MDP/NOD2-induced insulin sensitization and lower metabolic tissue inflammation during obesity and endotoxemia. IRF4 was dispensable for exacerbated glucose intolerance via NOD1. Mifamurtide, an MDP-based drug with orphan drug status, was an insulin sensitizer at clinically relevant doses in obese mice.
Pattern recognition receptors link metabolite and bacteria-derived inflammation to insulin resistance during obesity. We demonstrate that NOD2 detection of bacterial cell wall peptidoglycan (PGN) regulates metabolic inflammation and insulin sensitivity. An obesity-promoting high-fat diet (HFD) increased NOD2 in hepatocytes and adipocytes, and NOD2−/− mice have increased adipose tissue and liver inflammation and exacerbated insulin resistance during a HFD. This effect is independent of altered adiposity or NOD2 in hematopoietic-derived immune cells. Instead, increased metabolic inflammation and insulin resistance in NOD2−/− mice is associated with increased commensal bacterial translocation from the gut into adipose tissue and liver. An intact PGN-NOD2 sensing system regulated gut mucosal bacterial colonization and a metabolic tissue dysbiosis that is a potential trigger for increased metabolic inflammation and insulin resistance. Gut dysbiosis in HFD-fed NOD2−/− mice is an independent and transmissible factor that contributes to metabolic inflammation and insulin resistance when transferred to WT, germ-free mice. These findings warrant scrutiny of bacterial component detection, dysbiosis, and protective immune responses in the links between inflammatory gut and metabolic diseases, including diabetes.
Statins reduce lipid levels and are widely prescribed. Statins have been associated with an increased incidence of type 2 diabetes, but the mechanisms are unclear. Activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3)/caspase-1 inflammasome, promotes insulin resistance, a precursor of type 2 diabetes. We showed that four different statins increased interleukin-1β (IL-1β) secretion from macrophages, which is characteristic of NLRP3 inflammasome activation. This effect was dose dependent, absent in NLRP3−/− mice, and prevented by caspase-1 inhibition or the diabetes drug glyburide. Long-term fluvastatin treatment of obese mice impaired insulin-stimulated glucose uptake in adipose tissue. Fluvastatin-induced activation of the NLRP3/caspase-1 pathway was required for the development of insulin resistance in adipose tissue explants, an effect also prevented by glyburide. Fluvastatin impaired insulin signaling in lipopolysaccharide-primed 3T3-L1 adipocytes, an effect associated with increased caspase-1 activity, but not IL-1β secretion. Our results define an NLRP3/caspase-1–mediated mechanism of statin-induced insulin resistance in adipose tissue and adipocytes, which may be a contributing factor to statin-induced development of type 2 diabetes. These results warrant scrutiny of insulin sensitivity during statin use and suggest that combination therapies with glyburide, or other inhibitors of the NLRP3 inflammasome, may be effective in preventing the adverse effects of statins.
Obesity is associated with inflammation that can drive metabolic defects such as hyperlipidemia and insulin resistance. Specific metabolites can contribute to inflammation, but nutrient intake and obesity are also associated with altered bacterial load in metabolic tissues (i.e. metabolic endotoxemia). These bacterial cues can contribute to obesity-induced inflammation. The specific bacterial components and host receptors that underpin altered metabolic responses are emerging. We previously showed that Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) activation with bacterial peptidoglycan (PGN) caused insulin resistance in mice. We now show that PGN induces cell-autonomous lipolysis in adipocytes via NOD1. Specific bacterial PGN motifs stimulated lipolysis in white adipose tissue (WAT) explants from WT, but not NOD1−/− mice. NOD1-activating PGN stimulated mitogen activated protein kinases (MAPK),protein kinase A (PKA), and NF-κB in 3T3-L1 adipocytes. The NOD1-mediated lipolysis response was partially reduced by inhibition of ERK1/2 or PKA alone, but not c-Jun N-terminal kinase (JNK). NOD1-stimulated lipolysis was partially dependent on NF-κB and was completely suppressed by inhibiting ERK1/2 and PKA simultaneously or hormone sensitive lipase (HSL). Our results demonstrate that bacterial PGN stimulates lipolysis in adipocytes by engaging a stress kinase, PKA, NF-κB-dependent lipolytic program. Bacterial NOD1 activation is positioned as a component of metabolic endotoxemia that can contribute to hyperlipidemia, systemic inflammation and insulin resistance by acting directly on adipocytes.
Highlights d Type of LPS dictates barrier function, inflammation, incretins, and blood glucose d Endotoxin units (EUs) do not reflect how LPS influences blood glucose or insulin d R. sphaeroides LPS promotes metabolically beneficial endotoxemia d LPS characteristics dictate metabolically beneficial versus deleterious endotoxemia
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.